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LT Properties

An LT property is a set of infinite traces over AP.

Specifying such sets explicitly is often inconvenient.

Mutual exclusion is specified over AP = { ¢1,c2 } by
Putex = set of infinite words Ag Ay As ... with {¢1,c0} € A; foralli >0

Starvation freedom is specified over AP = { ¢y, w1, co, ws } by

Prostarve = set of infinite words Ay A1 As ... such that:

(OECI] 71)1€Aj>:><030j. (ZlEAj) A (OECI] 71)26Aj>:><030j. (ZQEAj)

Such properties can be specified succinctly using linear temporal logic.
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@ Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)
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5.1.1 Linear Temporal Logic (LTL): Syntax

Linear temporal logic is a logic for describing LT properties.
e An extension of propositional logic with temporal modalities.
Modal logic over infinite sequences [Pnueli 1977].
Propositional logic:

e a€ AP atomic proposition
e =pand ¢ A VY negation and conjunction
Temporal operators:

e O¢ neXt state fulfills ¢
o pU1 ¢ holds Until a i-state is reached

Syntax of LTL over AP

o u=true|a|oAp|p| Oe|eUp

where a € AP is an atomic proposition.
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LTL Derived Operators

¢V Y
¢ — ¥
¢ <
¢S
true
false

0o
o

Precedence order:

“(md A )

o VY

(¢ = ) A (b = 9)

(@ AN =) V (=p A 9h)

¢V —¢

—true

trueU ¢ “eventually in the future”

-0 -0 “globally true”

e The unary operators bind stronger than the binary ones.

e — and (O bind equally strong.

o U takes precedence over A, V, and — .
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LTL Intuitive Semantics

a arbitrary  arbitrary  arbitrary  arbitrary
a (atomic prop.) @

arbitrary a arbitrary  arbitrary  arbitrary

Oa(nextstep) (O ®

anN—b aN—b an—b b arbitrary
aUb (unti) @ @ @ o
-a -a -a a arbitrary
Qa (eventually) O——() o

a

a a a
Oa(globally) @ @ @ o o
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LTL Intuitive Semantics

a arbitrary  arbitrary  arbitrary  arbitrary
a (atomic prop.) @

Let 0 = AgA1 Ay ... € (2AP)w'

O')ZCL iff a€ Ay (i.e., A()l:a)
aubp (unti) @ o L o

—a —a —a a arbitrary
Oa (eventually) O——() )
a a a a a
Oa (globally) @——@ L ] o o
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LTL Intuitive Semantics

a arbitrary  arbitrary  arbitrary  arbitrary
a (atomic prop.) @

arbitrary a arbitrary  arbitrary  arbitrary

Oa(nextstep) (O ®

Let 0 = AgA1As... € (QAP)"J.
cEQa iff A FEa
Oa (eventually) O——() o

a a a

a a
Da (globally) @@ @ o @
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LTL Intuitive Semantics

a arbitrary  arbitrary  arbitrary  arbitrary
a (atomic prop.) @

arbitrary a arbitrary  arbitrary  arbitrary

Oa(nextstep) (O ®

aN—b an—b anN—b b arbitrary

aub (unti) @ o @ o

Let 0 = AgA1As... € (2AP)W.

oEaUb iff 3j>0.4;=bandV0<i<j. A F=a

[ [ (=

Da (globally) @@ @ o @
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LTL Intuitive Semantics

a arbitrary  arbitrary  arbitrary  arbitrary
a (atomic prop.) @——O
arbitrary a arbitrary  arbitrary  arbitrary

Oa(nextstep) (O ®

an—b an—b aN—b b arbitrary
aub (unti) @ o @ o
—a -a a arbitrary

-a
Qa(eventually) O——() o

Let 0 = AgA1 Ay ... € (2AP)w'

oEQa iff 3i>0.4;=a
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LTL Intuitive Semantics

a arbitrary  arbitrary  arbitrary  arbitrary
a (atomic prop.) @

arbitrary a arbitrary  arbitrary  arbitrary

Oa(nextstep) (O ®

aN—b an—b anN—b b arbitrary
aub (untl) @ O @ o
Let 0 = AgA1Ay... € (2AP)w'

oEOa iff Vi>0.4;Fa

a a a

a a
Da (globally) @@ @ o @
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New Temporal Modalities ¢ and [J

Let 0 = AgAd1Ay... € (QAP)W.
OO ¢ “infinitely often”

o000y iff Vi203j>i A J
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New Temporal Modalities ¢ and [J

Let 0 = AgAd1Ay... € (QAP)W.
OO “eventually forever” ¢

cEO0Dp iff 3>0Vj>i Aj k¢ J
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Traffic Light Properties

e Once red, the light cannot become green immediately
O(red — — O green)

e The light becomes green eventually: O green
e The light becomes green infinitely often: OO green
e Once red, the light becomes green eventually: O(red — O green)

e Once red, the light always becomes green eventually after being yellow
for some time in-between:
O(red — O (red U (yellow N O (yellow U green))))

Note these properties assume European traffic light which goes red,
red /yellow, green, yellow, repeat.
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LTL General Semantics (5.1.2)

Let 0 = AgA1Ay... € (2AP)W.

o [ true

o E a iff a€ Ay (e, Ao = a)

o E o1 A gy iff o ¢ and o=@

o E -p iff oo

o E Ogp iff o[l.]=A14243...F ¢

o E p1Up iff 35>0.0j.]Fp2 and ofi.] =1, 0<i<j

where oli..] = A; Aix1 Aiqa ... is suffix of o from index i on.
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General Semantics of [, ¢, OO and OO

Let 0 = AgAj Ay ... € (247)%.
o E Op iff Fj>0.0.]FE¢
o E Dp iff V>0 0[.]F¢
o = DOp iff Vj>03i>j40fi..]=¢

o | OOy iff Jj>0Vi>j.oi..]E¢
where ofi..] = A; Aix1 Aiqa ... is suffix of o from index i on.
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Definition 5.6 Semantics Over Words

The LT-property induced by LTL formula ¢ over AP is:
Words(yp) = {a € (2AP> | o = c,o}, where [= is the smallest
satisfaction relation.
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Definition 5.7 Semantics Over Paths and States

Let TS = (S, Act,—, I, AP, L) be a transition system without terminal
states, and let ¢ be an LTL-formula over AP.

e For infinite path fragment 7 of TS:

TEe iff trace(m) | ¢

e For state s € S:

sEp iff  Vm € Paths(s). 7 = ¢

e TS satisfies ¢, denoted TS |= o, iff Traces(TS) C Words(p)
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Semantics for Transition Systems

TSE ¢

iff (* transition system semantics *)

Traces(TS) C Words(p)

iff (* definition of |= for LT-properties *)
TS |= Words(p)

iff  (* Definition of Words(y) *)
7 = ¢ for all m € Paths(TS)

iff (* semantics of |= for states *)

so | @ forall spel
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(I SETHT S

: o

{a.b} {a,b} {a}

TS = Oa?
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(I SETHT S

So S3

{a.b} {ab} {a}

TS = Oa
TSEOf(a A b)?
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(I SETHT S

: o

{ab} {ab} {a}

TS =Ua

TSHEOfa A b)
TSEDO(b — Oa A —b))?
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(I SETHT S

: o

{ab} {ab} {a}

TS =Ua

TS Ofa A b)
TSEDO(b — Oa A —b))

Hao Zheng (CSE, USF) Comp Sys Verification 16 / 41



(I SETHT S

: o

{ab} {ab} {a}

TS =Ua

TSEOf(a A b)
TSEO(Eb — O(a A b))
TSEbU(a A —b)?
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(I SETHT S

{ab}

Hao Zheng (CSE, USF)

: o

{ab} {a}

TS =Ua

TSEOf(a A b)
TSEO(Eb — O(a A b))
TS} bU(a A —b)
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Semantics of Negation

For paths, it holds 7 = ¢ if and only if 7 & = since:

Words(—y) = (24F)“ \ Words(y)

But: TS}~ ¢ and TS |= —p are not equivalent in general.

It holds: TS = —¢ implies TS [~ ¢, not always the reverse!
Note that:

TS £ ¢ iff Traces(TS) € Words(yp)
iff Traces(TS) \ Words(y) # 0

iff Traces(TS) N Words(—p) # ()
TS neither satisfies ¢ nor = if there are paths m; and w2 in TS such
that m = ¢ and w2 = —¢.
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Negation Example

St @ S2
0

{a}
A transition system for which TS}~ $a and TS [ —0a.
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Example 5.13 Leader Election

e N processes, each of which has an unique identity. Leader process is
the one that has the largest ID.
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Example 5.13 Leader Election

e N processes, each of which has an unique identity. Leader process is
the one that has the largest ID.
e There is always one leader

O( \/ leader; N \/ —leader;)
I<i<N I<jSN,j#1

O0( \/ leader; N \/ —leader;)

1<i<N 1<j<N,j#i

00( \/ leader;)

1<i<N

O0( \/ leader;)

1<i<N
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Example 5.13 Leader Election

e N processes, each of which has an unique identity. Leader process is
the one that has the largest ID.

e There must always be at most one leader
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Example 5.13 Leader Election

e N processes, each of which has an unique identity. Leader process is
the one that has the largest ID.

e There must always be at most one leader

O /\ (leader; — /\ —leader;)

1<i<N 1<G<N, j#i
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Example 5.13 Leader Election

e N processes, each of which has an unique identity. Leader process is
the one that has the largest ID.

e There must always be at most one leader

O /\ (leader; — /\ —leader;)

1<i<N 1<G<N, j#i

o A correct leader will be elected eventually.
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© Linear Time Logic: Equivalences (Section 5.1.4)
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5.1.4 Equivalence

LTL formulas ¢, are equivalent, denoted ¢ = 9, if:

Words(¢p) = Words(v))
e Recall that The time complexity for invariant checking is:
O(N + (1 +[®[) + M)
where

e N is the number of reachable states,

e M is the number of transitions in the reachable fragment of TS, and
o |D| is the length of ® - number of logic connectives in ®
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Duality and Idempotence Laws

Duality: -O¢ = 09
—0¢ = O-¢
~0O¢ = O~9¢
Idempotency: Od¢ = 0O¢
00 = 00

oU(pUy) = ¢Uy
(eUp)Uy = ¢Uyp
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Absorption and Distributive Laws

Absorption: oo ¢ a6
Oo0e = 0O0¢

Distribution: O (¢Uv) = (O¢)U(Ov)
Ol V) = 09V 0P
O@ A ¢) = Op A Oy

but ......: OoUy) #  (0p) U (Oy)
Ol Np) # Od N QY
O v ) # O¢ v Oy
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Distributive Laws

{b} {a}

N
W

TS} O(a A b) and TS |= (Ca A Ob)
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Expansion Laws

Define U, ¢, and O by recursion.
Expansion: o = o AN OO¢
00 = oV O0¢
pUy = ¢ Vv (6 A O(@Uy))
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© Linear Time Logic: Additional Operators (Section 5.1.5)
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5.1.5 Weak Until

The weak-until (or: unless) operator:

def

oWy = (pUy) v Op

W 1) does not require a 1-state to be reached.
Until U and weak until W are dual.

—(pUy) = (¢ A )W (=p A )
(W) = (¢ A )U(=p A )

Until and weak until are equally expressive:

Oy = ¢ Wifalse
Uy = (pWi) A-O-9
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The Release Operator

e The release operator:
def
eRy = (-pU—)
= (e A YW@ A W)
e ) always holds, a requirement that is released as soon as ¢ holds.

0000  —0  —O—O— -
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@ Linear Time Logic: Specifying Fairness (Section 5.1.6)
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Recall Action-Based Fairness Constraints

For set A of actions and infinite run p:
e Unconditional fairness
Some action in A occurs infinitely often along p.

e Strong fairness

If actions in A are infinitely often enabled (not necessarily always!)
then some action in A has to occur infinitely often in p.

e Weak fairness

If actions in A are continuously enabled (no temporary disabling!)
then it has to occur infinitely often in p.

This chapter uses state-based fairness assumptions (and constraints).

Hao Zheng (CSE, USF) Comp Sys Verification

30 / 41



5.1.6 LTL Fairness Constraints

Let ® and ¥ be propositional logic formulas over AP.

@ An unconditional LTL fairness constraint is of the form:
ufair = OQW
® A strong LTL fairness condition is of the form:
sfair = 0O0® — OV
© A weak LTL fairness constraint is of the form:

wfair = OU® — OOW

® stands for “something is enabled”; W for “something is taken”
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Fair Satisfaction

For state s in transition system TS (over AP) without terminal states, let

FairPathsgy,(s) = {m € Paths(s) | 7| fair }
FairTracesjo;(s) = { trace(r) | m € FairPathss.(s) }

For LTL-formula ¢, and LTL fairness assumption fair:

s Efair ¢ if and only if V7 € FairPathsgg,(s). m=¢ and
TS Euir ¢ ifand only if Vsg € 1.5 Ffair ¢

= fair is the fair satisfaction relation for LTL; = the standard one for LTL
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Example 5.27 Randomized Arbiter

noncrit,

unlock noncrity

rel rel

entery enter,

TSy || Arbiter || TSy ¥ OO crity
But: TS || Arbiter || TSy =jair OOcrity A OOcrity

with fair = OQhead A OOtail
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Semaphore-Based Mutual Exclusion

sfairy = 00 waity — OO crity
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Semaphore-Based Mutual Exclusion

fair = sfair; N sfairy
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Semaphore-Based Mutual Exclusion

fair = sfair; A sfairy
TSsem Efair OOCcrity A Olcrity
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Theorem 5.30 Reducing =, to =

For:

e A transition system TS without terminal states
e LTL formula ¢, and

e LTL fairness assumption fair

It holds:

TS Efair ¢ if and only if TS = (fair — o)

Verifying an LTL-formula under a fairness assumption can be done using
standard verification algorithms for LTL.
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© Automata-Based LTL Model Checking
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LTL Model-Checking Problem

The following decision problem:

Given finite transition system TS and LTL-formula ¢:
yields “yes" if TS = ¢, and “no” (plus a counterexample) if TS F~ ¢

See section 5.2 for details.
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A First Attempt

TSE ¢ ifandonlyif  Traces(TS) C Words(p)
Lo(Ap)

if and only if  Traces(TS) N L,(A,) = 0

But complementation of NBA is quadratically exponential.
If A has n states, A has " states in worst case!

Use the fact that L,(A,) = L,(A-)!
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TSE ¢ ifandonlyif  Traces(TS) C Words(y)
if and only if  Traces(TS) N ((2AF)« \ Words(y)) =

if and only if Traces(TS) N Words(—p) = ()
—
Lo (A-p)

if and only if TS® A, = OO—F where F
is the set of accepting states of A-,.

LTL model checking is thus reduced to persistence checking!
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Some Examples: LTL to BGA

green
o p
. —green .
- green green
0O green
aA—b
S
O ; O
—-a Vb —b
O(a — Ob)
true a true
OOa
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Overview of LTL Model Check
[ Negation of property ]

i

’ Model of system ‘ ’ LTL-formula —¢ ‘

model checker

’ Generalised Buchi automaton G-¢ ‘

¢

Transition system TS ’ Biichi automaton A4 ‘

Product transition system
TS® A4

v

TS@ﬂﬁ(P ): Ppers(ﬂﬂp)
Y A\l
i i
[‘No’ (counter-example) )
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