Linear-Time Logic

Hao Zheng

Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 **1** Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

Linear Time Logic: Specifying Fairness (Section 5.1.6)

- An LT property is a set of infinite traces over AP.
- Specifying such sets explicitly is often inconvenient.
- Mutual exclusion is specified over $AP = \{ c_1, c_2 \}$ by

 $P_{mutex} \ = \ {
m set} \ {
m of} \ {
m infinite} \ {
m words} \ A_0 \ A_1 \ A_2 \dots \ {
m with} \ \{ \ c_1, c_2 \ \}
ot \subseteq A_i \ {
m for} \ {
m all} \ i \ge 0$

- Starvation freedom is specified over $\textit{AP} = \{\,c_1, w_1, c_2, w_2\,\}$ by

 $P_{nostarve} =$ set of infinite words $A_0 A_1 A_2 \dots$ such that:

 $\left(\stackrel{\infty}{\exists} j. w_1 \in A_j\right) \Rightarrow \left(\stackrel{\infty}{\exists} j. c_1 \in A_j\right) \land \left(\stackrel{\infty}{\exists} j. w_2 \in A_j\right) \Rightarrow \left(\stackrel{\infty}{\exists} j. c_2 \in A_j\right)$

Such properties can be specified succinctly using linear temporal logic.

1 Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

- **2** Linear Time Logic: Equivalences (Section 5.1.4)
- **3** Linear Time Logic: Additional Operators (Section 5.1.5)
- 4 Linear Time Logic: Specifying Fairness (Section 5.1.6)
- 5 Automata-Based LTL Model Checking

5.1.1 Linear Temporal Logic (LTL): Syntax

- Linear temporal logic is a logic for describing LT properties.
 - An extension of propositional logic with temporal modalities.
- Modal logic over infinite sequences [Pnueli 1977].
- Propositional logic:
 - $a \in AP$
 - $\neg\phi$ and $\phi~\wedge~\psi$
- Temporal operators:
 - $\bigcirc \phi$ neXt state fulfills ϕ • $\phi \cup \psi$ ϕ holds Until a ψ -state is reached
- Syntax of LTL over ${\cal AP}$

 $\varphi \ ::= \ true \ | \ a \ | \ \varphi \land \varphi \ | \ \neg \varphi \ | \ \bigcirc \ \varphi \ | \ \varphi \ \mathsf{U} \ \varphi$

where $a \in AP$ is an atomic proposition.

atomic proposition negation and conjunction

LTL Derived Operators

Precedence order:

- The unary operators bind stronger than the binary ones.
- \neg and \bigcirc bind equally strong.
- U takes precedence over $\wedge,\,\vee,$ and $~\rightarrow~.$

New Temporal Modalities \Diamond and \Box

New Temporal Modalities \Diamond and \Box

Hao Zheng (CSE, USF)

- Once red, the light cannot become green immediately
- The light becomes green eventually: \Diamond green
- The light becomes green infinitely often: $\Box \Diamond green$
- Once red, the light becomes green eventually: \Box (red \rightarrow \Diamond green)
- Once red, the light always becomes green eventually after being yellow for some time in-between:

 $\Box(\mathit{red} \to \bigcirc (\mathit{red} \: \mathsf{U} \, (\mathit{yellow} \land \bigcirc (\mathit{yellow} \: \mathsf{U} \, \mathit{green}))))$

 \Box (red $\rightarrow \neg \bigcirc$ green)

Note these properties assume European traffic light which goes red, red/yellow, green, yellow, repeat.

LTL General Semantics (5.1.2)

Let
$$\sigma = A_0 A_1 A_2 \ldots \in (2^{AP})^{\omega}$$
.

 $\sigma \models \text{true}$

- $\sigma \models a \qquad \text{iff} \quad a \in A_0 \quad (\text{i.e., } A_0 \models a)$
- $\sigma \hspace{0.2cm} \models \hspace{0.2cm} \varphi_1 \hspace{0.2cm} \land \hspace{0.2cm} \varphi_2 \hspace{0.2cm} \text{iff} \hspace{0.2cm} \sigma \models \varphi_1 \hspace{0.2cm} \text{and} \hspace{0.2cm} \sigma \models \varphi_2$
- $\sigma \hspace{0.2cm} \models \hspace{0.2cm} \neg \hspace{0.2cm} \varphi \hspace{0.2cm} \text{iff} \hspace{0.2cm} \sigma \not\models \varphi$
- $\sigma \models \bigcirc \varphi$ iff $\sigma[1..] = A_1 A_2 A_3 \ldots \models \varphi$
- $\sigma \hspace{0.2cm} \models \hspace{0.2cm} \varphi_1 \, {\sf U} \, \varphi_2 \hspace{0.2cm} \text{iff} \hspace{0.2cm} \exists j \geq 0. \hspace{0.2cm} \sigma[j..] \models \varphi_2 \hspace{0.2cm} \text{and} \hspace{0.2cm} \sigma[i..] \models \varphi_1, \hspace{0.2cm} 0 \leq i < j$

where $\sigma[i..] = A_i A_{i+1} A_{i+2}...$ is suffix of σ from index i on.

General Semantics of \Box , \Diamond , $\Box \Diamond$ and $\Diamond \Box$

Let $\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^{\omega}$. $\sigma \models \Diamond \varphi \quad \text{iff} \quad \exists j \ge 0. \ \sigma[j..] \models \varphi$ $\sigma \models \Box \varphi \quad \text{iff} \quad \forall j \ge 0. \ \sigma[j..] \models \varphi$ $\sigma \models \Box \Diamond \varphi \quad \text{iff} \quad \forall j \ge 0. \ \exists i \ge j. \ \sigma[i \dots] \models \varphi$ $\sigma \models \Diamond \Box \varphi \quad \text{iff} \quad \exists j \ge 0. \forall i \ge j. \ \sigma[i \dots] \models \varphi$

where $\sigma[i..] = A_i A_{i+1} A_{i+2}...$ is suffix of σ from index i on.

The LT-property induced by LTL formula
$$\varphi$$
 over AP is:
 $Words(\varphi) = \left\{ \sigma \in \left(2^{AP}\right)^{\omega} \mid \sigma \models \varphi \right\}$, where \models is the smallest satisfaction relation.

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let φ be an LTL-formula over AP.

• For infinite path fragment π of *TS*:

$$\pi \models \varphi$$
 iff $trace(\pi) \models \varphi$

• For state $s \in S$:

 $s \models \varphi$ iff $\forall \pi \in Paths(s). \ \pi \models \varphi$

• **TS** satisfies φ , denoted **TS** $\models \varphi$, iff **Traces**(**TS**) \subseteq **Words**(φ)

 $\mathit{TS} \models \varphi$

- iff (* transition system semantics *) $Traces(TS) \subseteq Words(\varphi)$
- iff (* definition of \models for LT-properties *) $TS \models Words(\varphi)$

iff (* Definition of
$$Words(\varphi)$$
 *)
 $\pi \models \varphi$ for all $\pi \in Paths(TS)$

$$\begin{array}{ll} \text{iff} & (\texttt{* semantics of}\models\texttt{for states}\;\texttt{*})\\ s_0\models\varphi\;\texttt{for all}\;s_0\in I & . \end{array}$$

 $TS \models \Box a$ $TS \models \bigcirc (a \land b)?$

$$TS \models \Box a$$
$$TS \not\models \bigcirc (a \land b)$$
$$TS \models \Box (\neg b \rightarrow \Box (a \land \neg b))?$$

$$TS \models \Box a$$
$$TS \not\models \bigcirc (a \land b)$$
$$TS \models \Box (\neg b \rightarrow \Box (a \land \neg b))$$

$$TS \models \Box a$$
$$TS \not\models \bigcirc (a \land b)$$
$$TS \models \Box (\neg b \rightarrow \Box (a \land \neg b))$$
$$TS \models b \cup (a \land \neg b)?$$

$$TS \models \Box a$$

$$TS \not\models \bigcirc (a \land b)$$

$$TS \models \Box (\neg b \rightarrow \Box (a \land \neg b))$$

$$TS \not\models b \cup (a \land \neg b)$$

• For paths, it holds $\pi \models \varphi$ if and only if $\pi \not\models \neg \varphi$ since:

$$Words(\neg \varphi) = (2^{AP})^{\omega} \setminus Words(\varphi)$$

- But: $TS \not\models \varphi$ and $TS \models \neg \varphi$ are *not* equivalent in general.
- It holds: $TS \models \neg \varphi$ implies $TS \not\models \varphi$, not always the reverse!
- Note that:

$$\begin{array}{ll} TS \not\models \varphi & \text{iff } Traces(TS) \not\subseteq Words(\varphi) \\ & \text{iff } Traces(TS) \setminus Words(\varphi) \neq \emptyset \\ & \text{iff } Traces(TS) \cap Words(\neg \varphi) \neq \emptyset \end{array}$$

TS neither satisfies φ nor ¬φ if there are paths π₁ and π₂ in *TS* such that π₁ ⊨ φ and π₂ ⊨ ¬φ.

Negation Example

A transition system for which $TS \not\models \Diamond a$ and $TS \not\models \neg \Diamond a$.

• N processes, each of which has an unique identity. Leader process is the one that has the largest ID.

Example 5.13 Leader Election

- N processes, each of which has an unique identity. Leader process is the one that has the largest ID.
- There is always one leader

$$\Box(\bigvee_{1 \leq i \leq N} leader_i \land \bigvee_{1 \leq j \leq N, j \neq i} \neg leader_j)$$
$$\Box \Diamond(\bigvee_{1 \leq i \leq N} leader_i \land \bigvee_{1 \leq j \leq N, j \neq i} \neg leader_j)$$
$$\Box \Diamond(\bigvee_{1 \leq i \leq N} leader_i)$$
$$\Diamond \Box(\bigvee_{1 \leq i \leq N} leader_i)$$

- N processes, each of which has an unique identity. Leader process is the one that has the largest ID.
- There must always be at most one leader

- N processes, each of which has an unique identity. Leader process is the one that has the largest ID.
- There must always be at most one leader

$$\Box \bigwedge_{1 \le i \le N} (leader_i \to \bigwedge_{1 \le j \le N, j \ne i} \neg leader_j)$$

- N processes, each of which has an unique identity. Leader process is the one that has the largest ID.
- There must always be at most one leader

$$\Box \bigwedge_{1 \le i \le N} (leader_i \to \bigwedge_{1 \le j \le N, j \ne i} \neg leader_j)$$

• A correct leader will be elected eventually.

Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

4 Linear Time Logic: Specifying Fairness (Section 5.1.6)

5 Automata-Based LTL Model Checking

LTL formulas ϕ, ψ are *equivalent*, denoted $\phi \equiv \psi$, if: $Words(\phi) = Words(\psi)$

• Recall that The time complexity for invariant checking is:

$$\mathcal{O}(N*(1+|\Phi|)+M)$$

where

- N is the number of reachable states,
- M is the number of transitions in the reachable fragment of TS, and
- $|\Phi|$ is the length of Φ number of logic connectives in Φ

Duality and Idempotence Laws

Idempotency:	$\Box \Box \phi$	\equiv	$\Box \phi$
	$\diamondsuit \diamondsuit \phi$	≡	$\Diamond \phi$
	$\phiU(\phiU\psi)$	≡	$\phiU\psi$
	$(\phi U \psi) U \psi$	≡	$\phiU\psi$

Absorption and Distributive Laws

Absorption:
$$\Diamond \Box \Diamond \phi \equiv \Box \Diamond \phi$$
 $\Box \Diamond \Box \phi \equiv \Diamond \Box \phi$

Distribution: $\bigcirc (\phi \cup \psi) \equiv (\bigcirc \phi) \cup (\bigcirc \psi)$ $\Diamond (\phi \lor \psi) \equiv \Diamond \phi \lor \Diamond \psi$ $\Box (\phi \land \psi) \equiv \Box \phi \land \Box \psi$

but: $\Diamond(\phi \cup \psi) \not\equiv (\Diamond \phi) \cup (\Diamond \psi)$ $\Diamond(\phi \land \psi) \not\equiv \Diamond \phi \land \Diamond \psi$ $\Box(\phi \lor \psi) \not\equiv \Box \phi \lor \Box \psi$

Distributive Laws

 $TS \not\models \Diamond (a \land b) \text{ and } TS \models (\Diamond a \land \Diamond b)$

Define U, \Diamond , and \Box by recursion.

Expansion: $\Box \phi \equiv \phi \land \bigcirc \Box \phi$ $\Diamond \phi \equiv \phi \lor \bigcirc \Diamond \phi$ $\phi \cup \psi \equiv \psi \lor (\phi \land \bigcirc (\phi \cup \psi))$ Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

4 Linear Time Logic: Specifying Fairness (Section 5.1.6)

5 Automata-Based LTL Model Checking

• The *weak-until* (or: unless) operator:

$$\varphi \, \mathsf{W} \, \psi \quad \stackrel{\mathsf{\tiny def}}{=} \quad (\varphi \, \mathsf{U} \, \psi) \ \lor \ \Box \varphi$$

- $\varphi\,\mathrm{W}\,\psi$ does not require a $\psi\text{-state}$ to be reached.
- Until U and weak until W are *dual*:

$$\begin{array}{lll} \neg(\varphi \, \mathsf{U} \, \psi) & \equiv & (\varphi \ \land \ \neg \psi) \, \mathsf{W} \left(\neg \varphi \ \land \ \neg \psi\right) \\ \neg(\varphi \, \mathsf{W} \, \psi) & \equiv & (\varphi \ \land \ \neg \psi) \, \mathsf{U} \left(\neg \varphi \ \land \ \neg \psi\right) \end{array}$$

• Until and weak until are equally expressive:

$$\Box \psi \equiv \psi \operatorname{W} \mathsf{false}$$

$$\varphi \operatorname{U} \psi \equiv (\varphi \operatorname{W} \psi) \land \neg \Box \neg \psi$$

• The *release* operator:

$$\begin{array}{rcl} \varphi \, \mathsf{R} \, \psi & \stackrel{\text{def}}{=} & \neg (\neg \varphi \, \mathsf{U} \, \neg \psi) \\ & \stackrel{\text{def}}{=} & (\neg \varphi \ \land \ \psi) \, \mathsf{W} \, (\phi \ \land \ \psi) \end{array}$$

• ψ always holds, a requirement that is released as soon as φ holds.

Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

Linear Time Logic: Specifying Fairness (Section 5.1.6)

5 Automata-Based LTL Model Checking

For set A of actions and infinite run ρ :

• Unconditional fairness

Some action in A occurs infinitely often along ρ .

• Strong fairness

If actions in A are *infinitely often* enabled (not necessarily always!) then some action in A has to occur infinitely often in ρ .

• Weak fairness

If actions in A are *continuously enabled* (no temporary disabling!) then it has to occur infinitely often in ρ .

This chapter uses *state-based* fairness assumptions (and constraints).

5.1.6 LTL Fairness Constraints

Let Φ and Ψ be propositional logic formulas over AP.

1 An *unconditional LTL fairness constraint* is of the form:

ufair = $\Box \Diamond \Psi$

2 A strong LTL fairness condition is of the form:

$$sfair = \Box \Diamond \Phi \longrightarrow \Box \Diamond \Psi$$

3 A *weak LTL fairness constraint* is of the form:

$$\textit{wfair} ~=~ \Diamond \Box \Phi ~\longrightarrow ~ \Box \Diamond \Psi$$

 Φ stands for "something is enabled"; Ψ for "something is taken"

For state s in transition system TS (over AP) without terminal states, let

$$\begin{array}{lll} \mathsf{FairPaths}_{fair}(s) & = & \left\{ \pi \in \mathsf{Paths}(s) \mid \pi \models fair \right\} \\ \mathsf{FairTraces}_{fair}(s) & = & \left\{ \operatorname{trace}(\pi) \mid \pi \in \mathsf{FairPaths}_{fair}(s) \right\} \end{array}$$

For LTL-formula φ , and LTL fairness assumption *fair*:

$$s \models_{fair} \varphi$$
 if and only if $\forall \pi \in FairPaths_{fair}(s)$. $\pi \models \varphi$ and
 $TS \models_{fair} \varphi$ if and only if $\forall s_0 \in I$. $s_0 \models_{fair} \varphi$

 \models_{fair} is the fair satisfaction relation for LTL; \models the standard one for LTL

Example 5.27 Randomized Arbiter

 $TS_1 \parallel Arbiter \parallel TS_2 \not\models \Box \Diamond crit_1$ But: $TS_1 \parallel Arbiter \parallel TS_2 \models_{fair} \Box \Diamond crit_1 \land \Box \Diamond crit_2$ with $fair = \Box \Diamond head \land \Box \Diamond tail$

Hao Zheng (CSE, USF)

Semaphore-Based Mutual Exclusion

$$sfair_1 = \Box \Diamond wait_1 \rightarrow \Box \Diamond crit_1$$

Semaphore-Based Mutual Exclusion

$$fair = sfair_1 \land sfair_2$$

Semaphore-Based Mutual Exclusion

$$fair = sfair_1 \land sfair_2$$
$$TS_{Sem} \models_{fair} \Box \Diamond crit_1 \land \Box \Diamond crit_2$$

Comp Sys Verification

Theorem 5.30 Reducing \models_{fair} to \models

For:

- A transition system TS without terminal states
- LTL formula φ , and
- LTL fairness assumption fair

It holds:

$$TS \models_{fair} \varphi$$
 if and only if $TS \models (fair \rightarrow \varphi)$

Verifying an LTL-formula under a fairness assumption can be done using standard verification algorithms for LTL.

Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

4 Linear Time Logic: Specifying Fairness (Section 5.1.6)

5 Automata-Based LTL Model Checking

The following decision problem:

Given finite transition system *TS* and LTL-formula φ : yields "yes" if $TS \models \varphi$, and "no" (plus a counterexample) if $TS \not\models \varphi$

See section 5.2 for details.

$$TS \models \varphi$$
 if and only if $Traces(TS) \subseteq \underbrace{Words(\varphi)}_{\mathcal{L}_{\omega}(\mathcal{A}_{\varphi})}$

 $\text{ if and only if } \quad \textit{Traces}(\textit{TS}) \, \cap \, \mathcal{L}_{\omega}(\overline{\mathcal{A}_{\varphi}}) \; = \; \emptyset$

But complementation of NBA is quadratically exponential. If \mathcal{A} has n states, $\overline{\mathcal{A}}$ has c^{n^2} states in worst case! Use the fact that $\mathcal{L}_{\omega}(\overline{\mathcal{A}_{\varphi}}) = \mathcal{L}_{\omega}(\mathcal{A}_{\neg\varphi})!$ $TS \models \varphi$ if and only if $Traces(TS) \subseteq Words(\varphi)$

if and only if $Traces(TS) \cap ((2^{AP})^{\omega} \setminus Words(\varphi)) = \emptyset$

$$\text{if and only if} \quad Traces(TS) \cap \underbrace{Words(\neg \varphi)}_{\mathcal{L}_{\omega}(\mathcal{A}_{\neg \varphi})} = \emptyset$$

 $\begin{array}{ll} \text{if and only if} & TS \otimes \mathcal{A}_{\neg \varphi} \models \Diamond \Box \neg F \text{ where } F \\ \text{is the set of accepting states of } \mathcal{A}_{\neg \varphi}. \end{array}$

LTL model checking is thus reduced to persistence checking!

Some Examples: LTL to BGA

 $\Box \Diamond green$

$$\Box(a \to \Diamond b)$$

Overview of LTL Model Checking

Hao Zheng (CSE, USF)