
Linear-Time Logic

Hao Zheng

Department of Computer Science and Engineering
University of South Florida

Tampa, FL 33620
Email: zheng@cse.usf.edu
Phone: (813)974-4757
Fax: (813)974-5456

Hao Zheng (CSE, USF) Comp Sys Verification 1 / 41

Overview

1 Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

4 Linear Time Logic: Specifying Fairness (Section 5.1.6)

5 Automata-Based LTL Model Checking

Hao Zheng (CSE, USF) Comp Sys Verification 2 / 41

LT Properties

• An LT property is a set of infinite traces over AP.

• Specifying such sets explicitly is often inconvenient.

• Mutual exclusion is specified over AP = { c1, c2 } by

Pmutex = set of infinite words A0A1A2 . . . with { c1, c2 } 6⊆ Ai for all i ≥ 0

• Starvation freedom is specified over AP = { c1, w1, c2, w2 } by

Pnostarve = set of infinite words A0A1A2 . . . such that:
(∞
∃ j. w1 ∈ Aj

)
⇒
(∞
∃ j. c1 ∈ Aj

)
∧
(∞
∃ j. w2 ∈ Aj

)
⇒
(∞
∃ j. c2 ∈ Aj

)

Such properties can be specified succinctly using linear temporal logic.

Hao Zheng (CSE, USF) Comp Sys Verification 3 / 41

Contents

1 Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

4 Linear Time Logic: Specifying Fairness (Section 5.1.6)

5 Automata-Based LTL Model Checking

Hao Zheng (CSE, USF) Comp Sys Verification 4 / 41

5.1.1 Linear Temporal Logic (LTL): Syntax

• Linear temporal logic is a logic for describing LT properties.
• An extension of propositional logic with temporal modalities.

• Modal logic over infinite sequences [Pnueli 1977].

• Propositional logic:
• a ∈ AP atomic proposition
• ¬φ and φ ∧ ψ negation and conjunction

• Temporal operators:
• ©φ neXt state fulfills φ
• φUψ φ holds Until a ψ-state is reached

• Syntax of LTL over AP

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | © ϕ | ϕUϕ

where a ∈ AP is an atomic proposition.

Hao Zheng (CSE, USF) Comp Sys Verification 5 / 41

LTL Derived Operators

φ ∨ ψ ≡ ¬ (¬φ ∧ ¬ψ)

φ → ψ ≡ ¬φ ∨ ψ

φ ↔ ψ ≡ (φ → ψ) ∧ (ψ → φ)

φ⊕ ψ ≡ (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ)

true ≡ φ ∨ ¬φ
false ≡ ¬ true

♦φ ≡ true Uφ “eventually in the future”

�φ ≡ ¬♦ ¬φ “globally true”

Precedence order:

• The unary operators bind stronger than the binary ones.

• ¬ and © bind equally strong.

• U takes precedence over ∧, ∨, and → .

Hao Zheng (CSE, USF) Comp Sys Verification 6 / 41

LTL Intuitive SemanticsLTL Intuitive Semantics

a
a (atomic prop.)

arbitrary arbitrary arbitrary arbitrary
. . .

arbitrary
⃝a (next step)

a arbitrary arbitrary arbitrary
. . .

a∧¬b
aUb (until)

a∧¬b a∧¬b b arbitrary
. . .

¬a
♦a (eventually)

¬a ¬a a arbitrary
. . .

a
"a (globally)

a a a a
. . .

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 7 / 1Hao Zheng (CSE, USF) Comp Sys Verification 7 / 41

LTL Intuitive SemanticsLTL Intuitive Semantics

a
a (atomic prop.)

arbitrary arbitrary arbitrary arbitrary
. . .

arbitrary
⃝a (next step)

a arbitrary arbitrary arbitrary
. . .

a∧¬b
aUb (until)

a∧¬b a∧¬b b arbitrary
. . .

¬a
♦a (eventually)

¬a ¬a a arbitrary
. . .

a
"a (globally)

a a a a
. . .

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 7 / 1

Let σ = A0A1A2 . . . ∈ (2AP)ω.

σ |= a iff a ∈ A0 (i.e., A0 |= a)

Hao Zheng (CSE, USF) Comp Sys Verification 7 / 41

LTL Intuitive SemanticsLTL Intuitive Semantics

a
a (atomic prop.)

arbitrary arbitrary arbitrary arbitrary
. . .

arbitrary
⃝a (next step)

a arbitrary arbitrary arbitrary
. . .

a∧¬b
aUb (until)

a∧¬b a∧¬b b arbitrary
. . .

¬a
♦a (eventually)

¬a ¬a a arbitrary
. . .

a
"a (globally)

a a a a
. . .

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 7 / 1

Let σ = A0A1A2 . . . ∈ (2AP)ω.

σ |=© a iff A1 |= a

Hao Zheng (CSE, USF) Comp Sys Verification 7 / 41

LTL Intuitive SemanticsLTL Intuitive Semantics

a
a (atomic prop.)

arbitrary arbitrary arbitrary arbitrary
. . .

arbitrary
⃝a (next step)

a arbitrary arbitrary arbitrary
. . .

a∧¬b
aUb (until)

a∧¬b a∧¬b b arbitrary
. . .

¬a
♦a (eventually)

¬a ¬a a arbitrary
. . .

a
"a (globally)

a a a a
. . .

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 7 / 1

Let σ = A0A1A2 . . . ∈ (2AP)ω.

σ |= aU b iff ∃j ≥ 0. Aj |= b and ∀0 ≤ i < j. Ai |= a

Hao Zheng (CSE, USF) Comp Sys Verification 7 / 41

LTL Intuitive Semantics
LTL Intuitive Semantics

a
a (atomic prop.)

arbitrary arbitrary arbitrary arbitrary
. . .

arbitrary
⃝a (next step)

a arbitrary arbitrary arbitrary
. . .

a∧¬b
aUb (until)

a∧¬b a∧¬b b arbitrary
. . .

¬a
♦a (eventually)

¬a ¬a a arbitrary
. . .

a
"a (globally)

a a a a
. . .

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 7 / 1

Let σ = A0A1A2 . . . ∈ (2AP)ω.

σ |= ♦ a iff ∃i ≥ 0. Ai |= a

Hao Zheng (CSE, USF) Comp Sys Verification 7 / 41

LTL Intuitive SemanticsLTL Intuitive Semantics

a
a (atomic prop.)

arbitrary arbitrary arbitrary arbitrary
. . .

arbitrary
⃝a (next step)

a arbitrary arbitrary arbitrary
. . .

a∧¬b
aUb (until)

a∧¬b a∧¬b b arbitrary
. . .

¬a
♦a (eventually)

¬a ¬a a arbitrary
. . .

a
"a (globally)

a a a a
. . .

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 7 / 1

Let σ = A0A1A2 . . . ∈ (2AP)ω.

σ |= � a iff ∀i ≥ 0. Ai |= a

Hao Zheng (CSE, USF) Comp Sys Verification 7 / 41

New Temporal Modalities ♦ and �

Let σ = A0A1A2 . . . ∈ (2AP)ω.

�♦ϕ “infinitely often”ϕ

.

σ |= �♦ϕ iff ∀i ≥ 0 ∃j ≥ i. Aj |= ϕ

Hao Zheng (CSE, USF) Comp Sys Verification 8 / 41

New Temporal Modalities ♦ and �

Let σ = A0A1A2 . . . ∈ (2AP)ω.

♦�ϕ “eventually forever”ϕ

. . .

σ |= ♦�ϕ iff ∃i ≥ 0 ∀j ≥ i. Aj |= ϕ

Hao Zheng (CSE, USF) Comp Sys Verification 9 / 41

Traffic Light Properties

• Once red, the light cannot become green immediately
� (red → ¬ © green)

• The light becomes green eventually: ♦ green

• The light becomes green infinitely often: �♦ green

• Once red, the light becomes green eventually: � (red → ♦ green)

• Once red, the light always becomes green eventually after being yellow
for some time in-between:

�(red →© (red U (yellow ∧ © (yellow U green))))

Note these properties assume European traffic light which goes red,
red/yellow, green, yellow, repeat.

Hao Zheng (CSE, USF) Comp Sys Verification 10 / 41

LTL General Semantics (5.1.2)

Let σ = A0A1A2 . . . ∈ (2AP)ω.

σ |= true

σ |= a iff a ∈ A0 (i.e., A0 |= a)

σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 6|= ϕ

σ |= ©ϕ iff σ[1..] = A1A2A3 . . . |= ϕ

σ |= ϕ1 Uϕ2 iff ∃j ≥ 0. σ[j..] |= ϕ2 and σ[i..] |= ϕ1, 0 ≤ i < j

where σ[i..] = Ai Ai+1 Ai+2 . . . is suffix of σ from index i on.

Hao Zheng (CSE, USF) Comp Sys Verification 11 / 41

General Semantics of �, ♦, �♦ and ♦�

Let σ = A0A1A2 . . . ∈ (2AP)ω.

σ |= ♦ϕ iff ∃j ≥ 0. σ[j..] |= ϕ

σ |= �ϕ iff ∀j ≥ 0. σ[j..] |= ϕ

σ |= �♦ϕ iff ∀j ≥ 0. ∃i ≥ j. σ[i . . .] |= ϕ

σ |= ♦�ϕ iff ∃j ≥ 0.∀i ≥ j. σ[i . . .] |= ϕ

where σ[i..] = Ai Ai+1 Ai+2 . . . is suffix of σ from index i on.

Hao Zheng (CSE, USF) Comp Sys Verification 12 / 41

Definition 5.6 Semantics Over Words

The LT-property induced by LTL formula ϕ over AP is:

Words(ϕ) =
{
σ ∈

(
2AP

)ω
| σ |= ϕ

}
, where |= is the smallest

satisfaction relation.

Hao Zheng (CSE, USF) Comp Sys Verification 13 / 41

Definition 5.7 Semantics Over Paths and States

Let TS = (S,Act,→, I,AP, L) be a transition system without terminal
states, and let ϕ be an LTL-formula over AP.

• For infinite path fragment π of TS:

π |= ϕ iff trace(π) |= ϕ

• For state s ∈ S:

s |= ϕ iff ∀π ∈ Paths(s). π |= ϕ

• TS satisfies ϕ, denoted TS |= ϕ, iff Traces(TS) ⊆Words(ϕ)

Hao Zheng (CSE, USF) Comp Sys Verification 14 / 41

Semantics for Transition Systems

TS |= ϕ

iff (* transition system semantics *)

Traces(TS) ⊆Words(ϕ)

iff (* definition of |= for LT-properties *)

TS |= Words(ϕ)

iff (* Definition of Words(ϕ) *)

π |= ϕ for all π ∈ Paths(TS)

iff (* semantics of |= for states *)

s0 |= ϕ for all s0 ∈ I .

Hao Zheng (CSE, USF) Comp Sys Verification 15 / 41

LTL Examples LTL Examples

{a,b}

s1

{a,b}

s2

{a}

s3

TS |=⇤a?

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 12 / 1

TS |= �a?

Hao Zheng (CSE, USF) Comp Sys Verification 16 / 41

LTL Examples
LTL Examples

{a,b}

s1

{a,b}

s2

{a}

s3

TS |=⇤a?

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 12 / 1

TS |= �a
TS |=© (a ∧ b)?

Hao Zheng (CSE, USF) Comp Sys Verification 16 / 41

LTL Examples
LTL Examples

{a,b}

s1

{a,b}

s2

{a}

s3

TS |=⇤a?

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 12 / 1

TS |= �a
TS 6|=© (a ∧ b)

TS |= �(¬b → �(a ∧ ¬b))?

Hao Zheng (CSE, USF) Comp Sys Verification 16 / 41

LTL Examples
LTL Examples

{a,b}

s1

{a,b}

s2

{a}

s3

TS |=⇤a?

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 12 / 1

TS |= �a
TS 6|=© (a ∧ b)

TS |= �(¬b → �(a ∧ ¬b))

Hao Zheng (CSE, USF) Comp Sys Verification 16 / 41

LTL Examples
LTL Examples

{a,b}

s1

{a,b}

s2

{a}

s3

TS |=⇤a?

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 12 / 1

TS |= �a
TS 6|=© (a ∧ b)

TS |= �(¬b → �(a ∧ ¬b))
TS |= bU (a ∧ ¬b)?

Hao Zheng (CSE, USF) Comp Sys Verification 16 / 41

LTL Examples
LTL Examples

{a,b}

s1

{a,b}

s2

{a}

s3

TS |=⇤a?

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 12 / 1

TS |= �a
TS 6|=© (a ∧ b)

TS |= �(¬b → �(a ∧ ¬b))
TS 6|= bU (a ∧ ¬b)

Hao Zheng (CSE, USF) Comp Sys Verification 16 / 41

Semantics of Negation

• For paths, it holds π |= ϕ if and only if π 6|= ¬ϕ since:

Words(¬ϕ) =
(
2AP

)ω \Words(ϕ) .

• But: TS 6|= ϕ and TS |= ¬ϕ are not equivalent in general.

• It holds: TS |= ¬ϕ implies TS 6|= ϕ, not always the reverse!

• Note that:
TS 6|= ϕ iff Traces(TS) 6⊆Words(ϕ)

iff Traces(TS) \Words(ϕ) 6= ∅
iff Traces(TS) ∩Words(¬ϕ) 6= ∅ .

• TS neither satisfies ϕ nor ¬ϕ if there are paths π1 and π2 in TS such
that π1 |= ϕ and π2 |= ¬ϕ.

Hao Zheng (CSE, USF) Comp Sys Verification 17 / 41

Negation Example
Negation Example

{a}

s1

/0

s0

/0

s2

A transition system for which TS 6|= ⌃a and TS 6|= ¬⌃a.

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 14 / 1

A transition system for which TS 6|= ♦a and TS 6|= ¬♦a.

Hao Zheng (CSE, USF) Comp Sys Verification 18 / 41

Example 5.13 Leader Election

• N processes, each of which has an unique identity. Leader process is
the one that has the largest ID.

• There must always be at most one leader

�
∧

1≤i≤N
(leaderi →

∧

1≤j≤N,j 6=i

¬leaderj)

• A correct leader will be elected eventually.

Hao Zheng (CSE, USF) Comp Sys Verification 19 / 41

Example 5.13 Leader Election

• N processes, each of which has an unique identity. Leader process is
the one that has the largest ID.

• There is always one leader

�(
∨

1≤i≤N
leaderi ∧

∨

1≤j≤N,j 6=i

¬leaderj)

�♦(
∨

1≤i≤N
leaderi ∧

∨

1≤j≤N,j 6=i

¬leaderj)

�♦(
∨

1≤i≤N
leaderi)

♦�(
∨

1≤i≤N
leaderi)

• There must always be at most one leader

�
∧

1≤i≤N
(leaderi →

∧

1≤j≤N,j 6=i

¬leaderj)

• A correct leader will be elected eventually.

Hao Zheng (CSE, USF) Comp Sys Verification 19 / 41

Example 5.13 Leader Election

• N processes, each of which has an unique identity. Leader process is
the one that has the largest ID.

• There must always be at most one leader

�
∧

1≤i≤N
(leaderi →

∧

1≤j≤N,j 6=i

¬leaderj)

• A correct leader will be elected eventually.

Hao Zheng (CSE, USF) Comp Sys Verification 19 / 41

Example 5.13 Leader Election

• N processes, each of which has an unique identity. Leader process is
the one that has the largest ID.

• There must always be at most one leader

�
∧

1≤i≤N
(leaderi →

∧

1≤j≤N,j 6=i

¬leaderj)

• A correct leader will be elected eventually.

Hao Zheng (CSE, USF) Comp Sys Verification 19 / 41

Example 5.13 Leader Election

• N processes, each of which has an unique identity. Leader process is
the one that has the largest ID.

• There must always be at most one leader

�
∧

1≤i≤N
(leaderi →

∧

1≤j≤N,j 6=i

¬leaderj)

• A correct leader will be elected eventually.

Hao Zheng (CSE, USF) Comp Sys Verification 19 / 41

Contents

1 Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

4 Linear Time Logic: Specifying Fairness (Section 5.1.6)

5 Automata-Based LTL Model Checking

Hao Zheng (CSE, USF) Comp Sys Verification 20 / 41

5.1.4 Equivalence

LTL formulas φ, ψ are equivalent, denoted φ ≡ ψ, if:

Words(φ) = Words(ψ)

• Recall that The time complexity for invariant checking is:

O(N ∗ (1 + |Φ|) +M)

where
• N is the number of reachable states,
• M is the number of transitions in the reachable fragment of TS, and
• |Φ| is the length of Φ - number of logic connectives in Φ

Hao Zheng (CSE, USF) Comp Sys Verification 21 / 41

Duality and Idempotence Laws

Duality: ¬�φ ≡ ♦ ¬φ
¬♦φ ≡ � ¬φ
¬ © φ ≡ © ¬φ

Idempotency: ��φ ≡ �φ

♦♦φ ≡ ♦φ
φU (φUψ) ≡ φUψ

(φUψ) Uψ ≡ φUψ

Hao Zheng (CSE, USF) Comp Sys Verification 22 / 41

Absorption and Distributive Laws

Absorption: ♦�♦φ ≡ �♦φ
�♦�φ ≡ ♦�φ

Distribution: © (φUψ) ≡ (©φ) U (©ψ)

♦(φ ∨ ψ) ≡ ♦φ ∨ ♦ψ
�(φ ∧ ψ) ≡ �φ ∧ �ψ

but: ♦(φUψ) 6≡ (♦φ) U (♦ψ)

♦(φ ∧ ψ) 6≡ ♦φ ∧ ♦ψ
�(φ ∨ ψ) 6≡ �φ ∨ �ψ

Hao Zheng (CSE, USF) Comp Sys Verification 23 / 41

Distributive Laws
Distributive Laws

/0

{a}{b}

TS 6|= ⌃(a ^ b) and TS |= ⌃a ^ ⌃b

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 18 / 1

TS 6|= ♦(a ∧ b) and TS |= (♦a ∧ ♦b)

Hao Zheng (CSE, USF) Comp Sys Verification 24 / 41

Expansion Laws

Define U , ♦ , and � by recursion.

Expansion: �φ ≡ φ ∧ ©�φ

♦φ ≡ φ ∨ © ♦φ
φUψ ≡ ψ ∨ (φ ∧ © (φUψ))

Hao Zheng (CSE, USF) Comp Sys Verification 25 / 41

Contents

1 Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

4 Linear Time Logic: Specifying Fairness (Section 5.1.6)

5 Automata-Based LTL Model Checking

Hao Zheng (CSE, USF) Comp Sys Verification 26 / 41

5.1.5 Weak Until

• The weak-until (or: unless) operator:

ϕWψ
def
= (ϕUψ) ∨ �ϕ

• ϕWψ does not require a ψ-state to be reached.

• Until U and weak until W are dual:

¬(ϕUψ) ≡ (ϕ ∧ ¬ψ) W (¬ϕ ∧ ¬ψ)

¬(ϕWψ) ≡ (ϕ ∧ ¬ψ) U (¬ϕ ∧ ¬ψ)

• Until and weak until are equally expressive:

�ψ ≡ ψW false

ϕUψ ≡ (ϕWψ) ∧ ¬�¬ψ

Hao Zheng (CSE, USF) Comp Sys Verification 27 / 41

The Release Operator

• The release operator:

ϕRψ
def
= ¬(¬ϕU¬ψ)

def
= (¬ϕ ∧ ψ) W (φ ∧ ψ)

• ψ always holds, a requirement that is released as soon as ϕ holds.

.

Hao Zheng (CSE, USF) Comp Sys Verification 28 / 41

Contents

1 Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

4 Linear Time Logic: Specifying Fairness (Section 5.1.6)

5 Automata-Based LTL Model Checking

Hao Zheng (CSE, USF) Comp Sys Verification 29 / 41

Recall Action-Based Fairness Constraints

For set A of actions and infinite run ρ:

• Unconditional fairness

Some action in A occurs infinitely often along ρ.

• Strong fairness

If actions in A are infinitely often enabled (not necessarily always!)
then some action in A has to occur infinitely often in ρ.

• Weak fairness

If actions in A are continuously enabled (no temporary disabling!)
then it has to occur infinitely often in ρ.

This chapter uses state-based fairness assumptions (and constraints).

Hao Zheng (CSE, USF) Comp Sys Verification 30 / 41

5.1.6 LTL Fairness Constraints

Let Φ and Ψ be propositional logic formulas over AP.

1 An unconditional LTL fairness constraint is of the form:

ufair = �♦Ψ

2 A strong LTL fairness condition is of the form:

sfair = �♦Φ −→ �♦Ψ

3 A weak LTL fairness constraint is of the form:

wfair = ♦�Φ −→ �♦Ψ

Φ stands for “something is enabled”; Ψ for “something is taken”

Hao Zheng (CSE, USF) Comp Sys Verification 31 / 41

Fair Satisfaction

For state s in transition system TS (over AP) without terminal states, let

FairPathsfair (s) =
{
π ∈ Paths(s) | π |= fair

}

FairTracesfair (s) =
{

trace(π) | π ∈ FairPathsfair (s)
}

For LTL-formula ϕ, and LTL fairness assumption fair :

s |=fair ϕ if and only if ∀π ∈ FairPathsfair (s). π |=ϕ and

TS |=fair ϕ if and only if ∀s0 ∈ I. s0 |=fair ϕ

|=fair is the fair satisfaction relation for LTL; |= the standard one for LTL

Hao Zheng (CSE, USF) Comp Sys Verification 32 / 41

Example 5.27 Randomized ArbiterRandomized Arbiter

noncrit1

wait1

crit1

req1

enter1

rel

noncrit2

wait2

crit2

req2

enter2

rel

unlock

tail

lock enter2

rel
head

enter1

TS1 k Arbiter k TS2 6|= ⇤⌃crit1

But: TS1 k Arbiter k TS2 |=fair ⇤⌃crit1 ^ ⇤⌃crit2

with fair = ⇤⌃head ^⇤⌃tail

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 34 / 1

TS1 ‖ Arbiter ‖ TS2 6|= �♦ crit1

But: TS1 ‖ Arbiter ‖ TS2 |=fair �♦crit1 ∧ �♦crit2

with fair = �♦head ∧�♦tail

Hao Zheng (CSE, USF) Comp Sys Verification 33 / 41

Semaphore-Based Mutual Exclusion
Semaphore-Based Mutual Exclusion

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩

req1

req2

enter1

req2
req1

enter2

req2

enter1

enter2
req1

rel
rel

rel
rel

F =
⇣

/0,
�
{enter1 },{enter2 }

,
�
{ req1 },{ req2 }

 ⌘

sfair1 =⇤⌃(wait1 ^ ¬crit2) ! ⇤⌃crit1

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 35 / 1

sfair1 = �♦wait1 → �♦ crit1

Hao Zheng (CSE, USF) Comp Sys Verification 34 / 41

Semaphore-Based Mutual ExclusionSemaphore-Based Mutual Exclusion

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩

req1

req2

enter1

req2
req1

enter2

req2

enter1

enter2
req1

rel
rel

rel
rel

F =
⇣

/0,
�
{enter1 },{enter2 }

,
�
{ req1 },{ req2 }

 ⌘

sfair1 =⇤⌃(wait1 ^ ¬crit2) ! ⇤⌃crit1

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 35 / 1
fair = sfair1 ∧ sfair2

Hao Zheng (CSE, USF) Comp Sys Verification 34 / 41

Semaphore-Based Mutual Exclusion
Semaphore-Based Mutual Exclusion

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩

req1

req2

enter1

req2
req1

enter2

req2

enter1

enter2
req1

rel
rel

rel
rel

F =
⇣

/0,
�
{enter1 },{enter2 }

,
�
{ req1 },{ req2 }

 ⌘

sfair1 =⇤⌃(wait1 ^ ¬crit2) ! ⇤⌃crit1

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 35 / 1

fair = sfair1 ∧ sfair2

TSSem |=fair �♦crit1 ∧ �♦crit2

Hao Zheng (CSE, USF) Comp Sys Verification 34 / 41

Theorem 5.30 Reducing |=fair to |=
For:

• A transition system TS without terminal states

• LTL formula ϕ, and

• LTL fairness assumption fair

It holds:

TS |=fair ϕ if and only if TS |= (fair → ϕ)

Verifying an LTL-formula under a fairness assumption can be done using
standard verification algorithms for LTL.

Hao Zheng (CSE, USF) Comp Sys Verification 35 / 41

Contents

1 Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)

2 Linear Time Logic: Equivalences (Section 5.1.4)

3 Linear Time Logic: Additional Operators (Section 5.1.5)

4 Linear Time Logic: Specifying Fairness (Section 5.1.6)

5 Automata-Based LTL Model Checking

Hao Zheng (CSE, USF) Comp Sys Verification 36 / 41

LTL Model-Checking Problem

The following decision problem:

Given finite transition system TS and LTL-formula ϕ:

yields “yes” if TS |= ϕ, and “no” (plus a counterexample) if TS 6|= ϕ

See section 5.2 for details.

Hao Zheng (CSE, USF) Comp Sys Verification 37 / 41

A First Attempt

TS |= ϕ if and only if Traces(TS) ⊆Words(ϕ)︸ ︷︷ ︸
Lω(Aϕ)

if and only if Traces(TS) ∩ Lω(Aϕ) = ∅

But complementation of NBA is quadratically exponential.

If A has n states, A has cn
2

states in worst case!

Use the fact that Lω(Aϕ) = Lω(A¬ϕ)!

Hao Zheng (CSE, USF) Comp Sys Verification 38 / 41

Observation

TS |= ϕ if and only if Traces(TS) ⊆Words(ϕ)

if and only if Traces(TS) ∩
(
(2AP)ω \Words(ϕ)

)
= ∅

if and only if Traces(TS) ∩ Words(¬ϕ)︸ ︷︷ ︸
Lω(A¬ϕ)

= ∅

if and only if TS⊗A¬ϕ |= ♦�¬F where F
is the set of accepting states of A¬ϕ.

LTL model checking is thus reduced to persistence checking!

Hao Zheng (CSE, USF) Comp Sys Verification 39 / 41

Some Examples: LTL to BGA

Automata-Based LTL Model Checking 273

model checker

LTL-formula ¬ϕ

TS⊗ A |= Ppers(A)

TS⊗ A¬ϕ

‘No’ (counter-example)

Product transition system

Model of system

Transition system TS

Negation of property

Generalised Büchi automaton

Büchi automaton A¬ϕ

System

‘Yes’

Figure 5.16: Overview of LTL model checking.

q0 q1

green

¬green
¬ green green

Figure 5.17: NBA for !♦green.

As a second example consider the liveness property: “whenever event a occurs, event b
will eventually occur”. For example, the property given by the LTL formula !(request →
♦response) is of this form. An associated NBA over the alphabet 2{a,b} where a = request
and b = response is shown in Figure 5.18.

The automata in Figures 5.17 and 5.18 are deterministic, i.e., they have exactly one run
for each input word. To represent temporal properties like “eventually forever (from some
moment on)”, the concept of nondeterminism is, however, necessary.

The NBA A shown in Figure 5.19 accepts the language Words(♦!a). Here, AP ⊇{ a } and
Σ = 2AP; see also Example 4.51 (page 191). Intuitively, the NBA A nondeterministically
decides (by means of an omniscient oracle) when a continuously holds. Note that state q2

may be omitted, as there is no accepting run beginning in q2. (The reader should bear in
mind that DBA and NBA are not equally expressive; see Section 4.3.3 on page 188.)

�♦ green
274 Linear Temporal Logic

q0 q1

a∧ ¬b

b
¬a ∨ b ¬b

Figure 5.18: NBA for !(a → ♦b).

q0 q1 q2
a ¬a

true a true

Figure 5.19: NBA for ♦!a.

A key ingredient to the model-checking algorithm for LTL is the construction of an NBA
A satisfying

Lω(A) = Words(ϕ)

for the LTL formula ϕ. In order to do so, first a generalized NBA is constructed for ϕ,
which subsequently is transformed into an equivalent NBA. For the latter step we employ
the recipe as provided in Theorem 4.56 on page 195. For the sake of convenience we recall
the definition of generalized NBA; see also Definition 4.52 on page 193.

Definition 5.33. Generalized NBA (GNBA)

A generalized NBA is a tuple G = (Q,Σ, δ,Q0,F) where Q,Σ, δ,Q0 are defined as for
NBA (i.e., Q is a finite state space, Σ an alphabet, Q0 ⊆Q the set of initial states, and
δ : Q ×Σ → 2Q the transition relation) and F is a (possibly empty) subset of 2Q. The
elements of F are called acceptance sets. The accepted language Lω(G) consists of all
infinite words in (2AP)ω that have at least one infinite run q0 q1 q2 . . . in G such that for
each acceptance set F ∈ F there are infinitely many indices i with qi ∈ F .

A GNBA for which F is a singleton set can be regarded as an NBA. If the set F of
acceptance sets in G is empty, the language Lω(G) consists of all infinite words that have
an infinite run in G. Hence, if F = ∅, then G can be viewed as an NBA for which all
states are accepting.

Let us consider how to construct a GNBA over the alphabet 2AP for a given LTL formula
ϕ (over AP), i.e., a GNBA Gϕ with Lω(Gϕ) = Words(ϕ). Assume ϕ only contains the
operators ∧, ¬, ⃝ and U , i.e., the derived operators ∨, →, ♦, !, W , and so on are
assumed to be expressed in terms of the basic operators. Since the special case ϕ = true
is trivial, it may be assumed that ϕ ̸= true.

�(a→ ♦b)

274 Linear Temporal Logic

q0 q1

a∧ ¬b

b
¬a ∨ b ¬b

Figure 5.18: NBA for !(a → ♦b).

q0 q1 q2
a ¬a

true a true

Figure 5.19: NBA for ♦!a.

A key ingredient to the model-checking algorithm for LTL is the construction of an NBA
A satisfying

Lω(A) = Words(ϕ)

for the LTL formula ϕ. In order to do so, first a generalized NBA is constructed for ϕ,
which subsequently is transformed into an equivalent NBA. For the latter step we employ
the recipe as provided in Theorem 4.56 on page 195. For the sake of convenience we recall
the definition of generalized NBA; see also Definition 4.52 on page 193.

Definition 5.33. Generalized NBA (GNBA)

A generalized NBA is a tuple G = (Q,Σ, δ,Q0,F) where Q,Σ, δ,Q0 are defined as for
NBA (i.e., Q is a finite state space, Σ an alphabet, Q0 ⊆Q the set of initial states, and
δ : Q ×Σ → 2Q the transition relation) and F is a (possibly empty) subset of 2Q. The
elements of F are called acceptance sets. The accepted language Lω(G) consists of all
infinite words in (2AP)ω that have at least one infinite run q0 q1 q2 . . . in G such that for
each acceptance set F ∈ F there are infinitely many indices i with qi ∈ F .

A GNBA for which F is a singleton set can be regarded as an NBA. If the set F of
acceptance sets in G is empty, the language Lω(G) consists of all infinite words that have
an infinite run in G. Hence, if F = ∅, then G can be viewed as an NBA for which all
states are accepting.

Let us consider how to construct a GNBA over the alphabet 2AP for a given LTL formula
ϕ (over AP), i.e., a GNBA Gϕ with Lω(Gϕ) = Words(ϕ). Assume ϕ only contains the
operators ∧, ¬, ⃝ and U , i.e., the derived operators ∨, →, ♦, !, W , and so on are
assumed to be expressed in terms of the basic operators. Since the special case ϕ = true
is trivial, it may be assumed that ϕ ̸= true.

♦�a

Hao Zheng (CSE, USF) Comp Sys Verification 40 / 41

Overview of LTL Model CheckingOverview of LTL Model Checking

model checker

‘No’ (counter-example)

Model of system

Transition system TS

Negation of property

Product transition system
TS⌦A¬j

TS⌦A¬j |= Ppers(A¬j)

LTL-formula ¬j

Büchi automaton A¬j

Generalised Büchi automaton G¬j

System

‘Yes’

Chris J. Myers (Lecture 5: LTL) Verification of Cyber-Physical Systems 43 / 1
Hao Zheng (CSE, USF) Comp Sys Verification 41 / 41

	Linear Time Logic: Syntax & Semantics (Section 5.1.1 - 5.1.3)
	Linear Time Logic: Equivalences (Section 5.1.4)
	Linear Time Logic: Additional Operators (Section 5.1.5)
	Linear Time Logic: Specifying Fairness (Section 5.1.6)
	Automata-Based LTL Model Checking

