Computation Tree Logic

Hao Zheng

Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456

1 Introduction (Section 6.1)

2 Computation Tree Logic (Section 6.2)

- CTL Syntax
- CTL Semantics
- CTL Semantics Equivalences
- **3** CTL Model Checking (Section 6.4)
- Comparing CTL and LTL (Section 6.3)

Contents

1 Introduction (Section 6.1)

2 Computation Tree Logic (Section 6.2)

- CTL Syntax
- CTL Semantics
- CTL Semantics Equivalences
- **3** CTL Model Checking (Section 6.4)
- Output Comparing CTL and LTL (Section 6.3)

Introduction (6.1)

• Linear temporal logic:

"Statements about (all) paths starting in a state."

- $s \models \Box(x \le 20)$ iff for all possible paths starting in s always $x \le 20$.
- Quantifier \forall is implicit: $s \models \Box(x \le 20) \equiv s \models \forall \Box(x \le 20)$

Introduction (6.1)

• Linear temporal logic:

"Statements about (all) paths starting in a state."

- $s \models \Box(x \le 20)$ iff for all possible paths starting in s always $x \le 20$.
- Quantifier \forall is implicit: $s \models \Box(x \le 20) \equiv s \models \forall \Box(x \le 20)$
- Branching temporal logic:

"Statements about all or some paths starting in a state."

- $s \models \forall \Box (x \le 20)$ iff for all paths starting in s always $x \le 20$.
- $s \models \exists \Box (x \leq 20)$ iff for some path starting in s always $x \leq 20$.
- Nesting of path quantifiers is allowed.

Introduction (6.1)

• Linear temporal logic:

"Statements about (all) paths starting in a state."

- $s \models \Box(x \le 20)$ iff for all possible paths starting in s always $x \le 20$.
- Quantifier \forall is implicit: $s \models \Box(x \le 20) \equiv s \models \forall \Box(x \le 20)$
- Branching temporal logic:

"Statements about all or some paths starting in a state."

- $s \models \forall \Box (x \le 20)$ iff for all paths starting in s always $x \le 20$.
- $s \models \exists \Box (x \leq 20)$ iff for some path starting in s always $x \leq 20$.
- Nesting of path quantifiers is allowed.
- Checking ∃φ in LTL can be done using ∀¬φ, but this does not work for nested formulas such as ∀□∃◊a.

In any state of every computation $(\forall \Box)$, it is possible $(\exists \Diamond)$ to return to the initial state.

 $\Box \Diamond a \text{ vs } \forall \Box \exists \Diamond a, \text{ difference?}$

Computational Tree View of Transition Systems

- Semantics is based on a branching notion of time.
 - An infinite tree of states obtained by unfolding the transition system.
 - One "time instant" may have several possible successor "time instants".

- Incomparable expressiveness:
 - There are properties that can be expressed in LTL, but not in CTL.
 - There are also properties that can be expressed in CTL, but not in LTL.
- Distinct model-checking algorithms with different time/space complexities.
- Fairness assumptions require special treatment in CTL.
 - A natural part of LTL.
- Equivalences and preorders between transition systems based on simulation and bisimulation relations rather than traces.

Introduction (Section 6.1)

2 Computation Tree Logic (Section 6.2)

- CTL Syntax
- CTL Semantics
- CTL Semantics Equivalences
- **3** CTL Model Checking (Section 6.4)
- 4 Comparing CTL and LTL (Section 6.3)

Computational Tree Logic - Syntax (6.2.1)

Modal logic over infinite trees [Clarke & Emerson 1981].

- Statements over states (Φ) :
 - $a \in AP$
 - $\neg \Phi$ and $\Phi_1 \land \Phi_2$
 - ∃φ
 - $\forall \varphi$
- Statements over paths (φ):
 - \(\)\(\Phi\)
 - $\Phi_1 U \Phi_2$

atomic proposition negation and conjunction there exists a path fulfilling φ all paths fulfill φ

the next state fulfills Φ Φ_1 holds until a $\Phi_2\text{-state}$ is reached

Computational Tree Logic - Syntax (6.2.1)

Modal logic over infinite trees [Clarke & Emerson 1981].

- Statements over states (Φ) :
 - $a \in AP$
 - $\bullet \ \neg \, \Phi \text{ and } \Phi_1 \ \land \ \Phi_2$
 - ∃φ
 - $\forall \varphi$

• $\bigcirc \Phi$

Statements over paths (φ):

atomic proposition negation and conjunction there *exists* a path fulfilling φ *all* paths fulfill φ

the next state fulfills Φ Φ_1 holds until a Φ_2 -state is reached

- $\Phi_1 \cup \Phi_2$ Φ_1 holds un \Rightarrow Note that \bigcirc and \bigcup *alternate* with \forall and \exists :
 - $\forall \bigcirc \Phi, \forall \exists \bigcirc \Phi \notin \mathsf{CTL}$, but $\forall \bigcirc \forall \bigcirc \Phi$ and $\forall \bigcirc \exists \bigcirc \Phi \in \mathsf{CTL}$.
 - Four operators by the syntax rules:

$$\begin{array}{ll} \forall \bigcirc (AX), & \forall \Box (AG), & \forall U (AU), & \forall \Diamond (AF) \\ \exists \bigcirc (EX), & \exists \Box (EG), & \exists U (EU), & \exists \Diamond (EF) \end{array}$$

• Check Example 6.2 in the book for some example formulas.

potentially Φ :	$\exists \Diamond \Phi$	=	$\exists (trueU\Phi)$
inevitably Φ :	$\forall \Diamond \Phi$	=	$\forall (trueU\Phi)$
			V/A T
potentially always Φ :	$\exists \Box \Phi$	=	$\neg \forall \Diamond \neg \Phi$
invariantly Φ :	$\forall \Box \Phi$	=	$\neg \exists \Diamond \neg \Phi$
weak until:	$\exists (\Phi_1 U \Phi_2)$	=	$\neg \forall ((\Phi_1 \land \neg \Phi_2) U (\neg \Phi_1 \land \neg \Phi_2))$
	$\forall (\Phi_1 U \Phi_2)$	=	$\neg \exists \big((\Phi_1 \land \neg \Phi_2) U (\neg \Phi_1 \land \neg \Phi_2) \big)$

The boolean connectives are derived as usual.

Example Properties in CTL

Mutual exclusion:

 $\forall \Box (\neg crit_1 \lor \neg crit_2)$

• Starvation freedom:

```
(\forall \Box \forall \Diamond crit_1) \land (\forall \Box \forall \Diamond crit_2)
```

• Each red light is preceded by a yellow light:

 $\forall \Box (yellow \lor \forall \bigcirc \neg red)???$

• Traffic light is infinitely often green:

 $\forall \Box \forall \Diamond green$

• Every request is eventually granted:

```
\forall \Box (request \Rightarrow \forall \Diamond response)
```

• In every reachable state, it is possible to return to the start state:

 $\forall \Box \exists \Diamond start$

CTL Semantics Visualization

Defined by a relation \models such that

 $s \models \Phi$ if and only if formula Φ holds in state s

$$\begin{split} s &\models a & \text{iff} \quad a \in L(s) \\ s &\models \neg \Phi & \text{iff} \quad \neg (s \models \Phi) \\ s &\models \Phi \land \Psi & \text{iff} \quad (s \models \Phi) \land \ (s \models \Psi) \\ s &\models \exists \varphi & \text{iff} \quad \pi \models \varphi \text{ for some path } \pi \text{ that starts in } s \\ s &\models \forall \varphi & \text{iff} \quad \pi \models \varphi \text{ for all paths } \pi \text{ that start in } s \end{split}$$

Define a relation \models such that

 $\pi \models \varphi$ if and only if path π satisfies φ

$$\begin{split} \pi &\models \bigcirc \Phi & \quad \text{iff } \pi[1] \models \Phi \\ \pi &\models \Phi \, \mathsf{U} \, \Psi & \quad \text{iff } (\exists j \geq 0, \pi[j] \models \Psi \ \land \ (\forall \, 0 \leq k < j, \pi[k] \models \Phi)) \end{split}$$

where $\pi[i]$ denotes the state s_i in the path π

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

• For CTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

 $TS \models \Phi$ if and only if $\forall s_0 \in I. s_0 \models \Phi$

This is equivalent to $I \subseteq Sat(\Phi)$.

CTL Semantics - Examples

Remark 6.10 The Semantics of Negation

 $TS \not\models \Phi$ and $TS \not\models \neg \Phi$ is possible due to having multiple initial states, e.g., $s_0 \models \exists \Box \Phi$ and $s'_0 \not\models \exists \Box \Phi$.

 $TS \not\models \exists \Box a \text{ and } TS \not\models \neg \exists \Box a$

Definition 6.12

CTL-formulas Φ and Ψ (over *AP*) are *equivalent*, denoted $\Phi \equiv \Psi$ if and only if $Sat(\Phi) = Sat(\Psi)$ for *all* transition systems *TS* over *AP*.

 $\Phi \ \equiv \Psi \quad \text{iff} \quad (\mathit{TS} \models \Phi \quad \text{if and only if} \quad \mathit{TS} \models \Psi)$

$$\begin{array}{rcl} \forall \bigcirc \Phi & \equiv & \neg \exists \bigcirc \neg \Phi \\ \\ \exists \bigcirc \Phi & \equiv & \neg \forall \bigcirc \neg \Phi \\ \\ \forall \Diamond \Phi & \equiv & \neg \exists \Box \neg \Phi \\ \\ \exists \Diamond \Phi & \equiv & \neg \forall \Box \neg \Phi \\ \\ \forall (\Phi \cup \Psi) & \equiv & \neg \exists ((\Phi \land \neg \Psi) \cup (\neg \Phi \land \neg \Psi)) \end{array}$$

Recall in LTL: $\varphi \cup \psi \equiv \psi \lor (\varphi \land \bigcirc (\varphi \cup \psi))$

In CTL:

$$\begin{array}{rcl} \forall (\Phi \cup \Psi) & \equiv & \Psi \lor (\Phi \land \forall \bigcirc \forall (\Phi \cup \Psi)) \\ \forall \Diamond \Phi & \equiv & \Phi \lor \forall \bigcirc \forall \Diamond \Phi \\ \forall \Box \Phi & \equiv & \Phi \land \forall \bigcirc \forall \Box \Phi \\ \exists (\Phi \cup \Psi) & \equiv & \Psi \lor (\Phi \land \exists \bigcirc \exists (\Phi \cup \Psi)) \\ \exists \Diamond \Phi & \equiv & \Phi \lor \exists \bigcirc \exists \Diamond \Phi \\ \exists \Box \Phi & \equiv & \Phi \land \exists \bigcirc \exists \Box \Phi \end{array}$$

Recall in LTL: $\Box(\varphi \land \psi) \equiv \Box \varphi \land \Box \psi$ and $\Diamond(\varphi \lor \psi) \equiv \Diamond \varphi \lor \Diamond \psi$ In CTL: $\forall \Box(\Phi \land \Psi) \equiv \forall \Box \Phi \land \forall \Box \Psi$ $\exists \Diamond (\Phi \lor \Psi) \equiv \exists \Diamond \Phi \lor \exists \Diamond \Psi$

Distributive Laws (2)

Note that $\exists \Box (\Phi \land \Psi) \not\equiv \exists \Box \Phi \land \exists \Box \Psi$ and $\forall \Diamond (\Phi \lor \Psi) \not\equiv \forall \Diamond \Phi \lor \forall \Diamond \Psi.$

 $s \models \forall \Diamond (a \lor b) \text{ since}$ $s' \models a \implies s' \models a \lor b$ $s'' \models a \implies s'' \models a \lor b$ However, $s \nvDash \forall \Diamond a$ and $s \nvDash \forall \Diamond b$.

Hao Zheng (CSE, USF)

Introduction (Section 6.1)

2 Computation Tree Logic (Section 6.2)

- CTL Syntax
- CTL Semantics
- CTL Semantics Equivalences

3 CTL Model Checking (Section 6.4)

4 Comparing CTL and LTL (Section 6.3)

The set of CTL formulas in *existential normal form* (ENF) is given by: $\Phi ::= true | a | \Phi_1 \land \Phi_2 | \neg \Phi | EX \Phi | \exists (\Phi_1 \cup \Phi_2) | EG \Phi$

• For each CTL formula, there exists an equivalent CTL formula in ENF.

• Handle only EX Φ , EG Φ , and $\exists (\Phi_1 \cup \Phi_2)$.

- How to check whether *TS* satisfies CTL formula $\widehat{\Phi}$?
 - Convert the formula $\widehat{\Phi}$ into the equivalent Φ in ENF.
 - Compute *recursively* the set Sat(Φ) = { s ∈ S | s ⊨ Φ }.
 - $TS \models \Phi$ if and only if $I \subseteq Sat(\Phi)$.
- Recursive bottom-up computation of $Sat(\Phi)$:
 - Consider the parse-tree of Φ .
 - Start to compute Sat(Ψ_i), for all leafs, then go one level up in the tree and determine Sat(·) for these nodes, repeat until the root is computed.

CTL Model Checking: An Example

For all CTL formulas Φ, Ψ over AP it holds:

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states.

Theorem 6.23 Characterization of *Sat* (2)

• $Sat(\exists (\Phi \cup \Psi))$ is the <u>smallest</u> subset T of S, such that: () $Sat(\Psi) \subseteq T$ and

2 $(s \in Sat(\Phi) \text{ and } Post(s) \cap T \neq \emptyset)$ implies $s \in T$

- Sat(EG Φ) is the largest subset T of S, such that:
 ① T ⊆ Sat(Φ) and
 - **2** $s \in T$ implies $Post(s) \cap T \neq \emptyset$

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states.

Algorithm 14 Computation of Sat

 $switch(\Phi)$:

: return { $s \in S \mid a \in L(s)$ }; a : EX Ψ : return { $s \in S \mid \mathsf{Post}(s) \cap \mathsf{Sat}(\Psi) \neq \emptyset$ }; $\exists (\Phi_1 \cup \Phi_2)$: $T := Sat(\Phi_2)$; compute the smallest fixed point while $\{s \in Sat(\Phi_1) \setminus T \mid Post(s) \cap T \neq \emptyset\} \neq \emptyset$ do let $s \in \{s \in Sat(\Phi_1) \setminus T \mid Post(s) \cap T \neq \emptyset\}$: $T := T \cup \{s\};$ od: return T: $\mathsf{EG}\Phi$: $T := Sat(\Phi)$; compute the greatest fixed point while $\{s \in T \mid Post(s) \cap T = \emptyset\} \neq \emptyset$ do let $s \in \{s \in T \mid \mathsf{Post}(s) \cap T = \emptyset\}$; $T := T \setminus \{s\};$ od: return T:

end switch

Hao Zheng (CSE, USF)

Computing $Sat(\exists (\Phi \cup \Psi)) - An$ Example

 $\mathsf{Check}\;\mathsf{EF}\;((p=r)\;\wedge\;(p\neq q))\;\;\equiv\;\;\exists(true\;\mathsf{U}\;((p=r)\;\wedge\;(p\neq q)))$

Computing $Sat(\exists (\Phi \cup \Psi)) -$ Summary

• $Sat(\exists (\Phi \cup \Psi))$ is the smallest set $T \subseteq S$ such that

 $(1) \quad Sat(\Psi) \subseteq T \quad \text{and} \quad (2) \quad \{s \in T \mid s \models \Phi \land Post(s) \cap T \neq \emptyset\}$

- Initially, $T_0 = \{Sat(\Psi)\}.$
- Iteratively compute

 $T_{i+1} = T_i \cup \{s \in Sat(\Phi) \mid Post(s) \cap T_i \neq \emptyset\}$ for $i \ge 0$.

• In other words, computing $Sat(\exists (\Phi \cup \Psi))$ results in

$$T_0 \subseteq T_1 \subseteq \ldots \subseteq T_j \subseteq T_{j+1} \subseteq \ldots$$

• Since we assume TS to be finite, there exists a $j \ge 0$ such that

$$T_j = T_{j+1} = \ldots = Sat(\exists (\Phi \cup \Psi))$$

Computing $Sat(EG \Phi)$ - An Example

Check EGq

Computing $Sat(EG \Phi)$ – Summary

• $Sat(\mathsf{EG}\,\Phi)$ is the largest set $T\subseteq S$ such that

(1) $T \subseteq Sat(\Phi)$ and (2) $\{s \in T \mid Post(s) \cap T \neq \emptyset\}$

- Initially, $T_0 = Sat(\Phi)$.
- Then, iteratively compute

$$T_{i+1} = T_i \cap \{s \in Sat(\Phi) \mid Post(s) \cap T_i \neq \emptyset\}$$

• Thus, computing $Sat(EG \Phi)$ results in

$$T_0 \supseteq T_1 \supseteq \ldots$$

• Since we assume TS to be finite, there exists a $j \ge 0$ such that

$$T_j = T_{j+1} = \ldots = Sat(\mathsf{EG}\,\Phi)$$

Alternative Algorithm for Computing $Sat(EG \Phi)$

For transition system *TS* with *N* states and *M* transitions, and CTL formula Φ , the CTL model-checking problem *TS* $\models \Phi$ can be determined in time $\mathcal{O}(|\Phi| \cdot (N + M))$.

This result applies to both algorithms for EG Φ .

CTL Semantics - Practice

$$\exists \Diamond (\exists \Box a) \\ \exists (a \cup (\neg a \land \forall (\neg a \cup b)))$$

Introduction (Section 6.1)

2 Computation Tree Logic (Section 6.2)

- CTL Syntax
- CTL Semantics
- CTL Semantics Equivalences
- **3** CTL Model Checking (Section 6.4)

4 Comparing CTL and LTL (Section 6.3)

6.3 Equivalence of LTL and CTL Formulas

Definition 6.17

CTL-formula Φ and LTL-formula φ (both over *AP*) are *equivalent*, denoted $\Phi \equiv \varphi$, if for *any* transition system *TS* (over *AP*):

 $TS \models \Phi$ if and only if $TS \models \varphi$

Theorem 6.18

Let Φ be a CTL-formula, and φ the LTL-formula obtained by eliminating all path quantifiers in Φ . Then: [Clarke & Draghicescu]

$$\Phi \equiv \varphi$$

or

there does not exist any LTL-formula that is equivalent to $\boldsymbol{\Phi}.$

- Some LTL-formulas cannot be expressed in CTL, e.g.,
 - $\Diamond \Box a$
 - $\Diamond(a \land \bigcirc a)$
- Some CTL-formulas cannot be expressed in LTL, e.g.,
 - $\bullet \hspace{0.1in} \forall \Diamond \forall \Box a$
 - $\forall \Diamond (a \land \forall \bigcirc a)$
 - $\forall \Box \exists \Diamond a$

 \Rightarrow Cannot be expressed = there does not exist an equivalent formula.

Comparing LTL and CTL (Lemma 6.19)

 $\forall \Diamond \forall \Box a \neq \Diamond \Box a.$

Comparing LTL and CTL (Lemma 6.19)

 $\forall \Diamond \forall \Box a \not\equiv \Diamond \Box a.$

Comparing LTL and CTL (Lemma 6.20)

Comparing LTL and CTL (Lemma 6.20)

The CTL-formula $\forall \Box \exists \Diamond a$ cannot be expressed in LTL

TS

Linear-Time vs. Branching-Time Summary

Aspect	Linear Time	Branching Time
"behavior" in a state s	path-based: trace(s)	state-based: computation tree of s
temporal logic	LTL: path formulas φ $s \models \varphi$ iff $\forall \pi \in \rho(s). \pi \models \varphi$	CTL: state formulas existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$
complexity of the model checking problems	PSPACE–complete $\mathcal{O}\left(\mathcal{TS} \cdot 2^{ arphi } ight)$	PTIME $\mathcal{O}\left(\mathit{TS} \cdot \Phi ight)$
implementation- relation	trace inclusion and the like (proof is PSPACE-complete)	simulation and bisimulation (proof in polynomial time)
fairness	no special techniques	special techniques needed

- Branching time semantics of computation
- CTL for expressing branching time properties
- CTL model checking algorithms
- CTL and LTL are NOT comparable