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Introduction (6.1)

• Linear temporal logic:

“Statements about (all) paths starting in a state.”

• s |= �(x ≤ 20) iff for all possible paths starting in s always x ≤ 20.
• Quantifier ∀ is implicit: s |= �(x ≤ 20) ≡ s |= ∀�(x ≤ 20)

• Branching temporal logic:

“Statements about all or some paths starting in a state.”

• s |= ∀�(x ≤ 20) iff for all paths starting in s always x ≤ 20.
• s |= ∃�(x ≤ 20) iff for some path starting in s always x ≤ 20.
• Nesting of path quantifiers is allowed.

• Checking ∃ϕ in LTL can be done using ∀¬ϕ, but this does not work for
nested formulas such as ∀�∃♦a.

In any state of every computation (∀�), it is possible (∃♦) to return to the
initial state.

�♦a vs ∀�∃♦a, differenece?
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Computational Tree View of Transition Systems

• Semantics is based on a branching notion of time.
• An infinite tree of states obtained by unfolding the transition system.
• One “time instant” may have several possible successor “time instants”.

Transition Systems and Trees

s1

s2s3 {x = 0}

{x = 0}

{x 6= 0}

{x = 1,x 6= 0}

(s0,0)

(s1,1)

(s2,2) (s3,2)

(s3,3) (s2,3) (s3,3)

(s2,4) (s3,4) (s3,4) (s2,4) (s3,4)

s0
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Branching vs Linear Temporal Logics

• Incomparable expressiveness:
• There are properties that can be expressed in LTL, but not in CTL.
• There are also properties that can be expressed in CTL, but not in LTL.

• Distinct model-checking algorithms with different time/space
complexities.

• Fairness assumptions require special treatment in CTL.
• A natural part of LTL.

• Equivalences and preorders between transition systems based on
simulation and bisimulation relations rather than traces.
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Computational Tree Logic - Syntax (6.2.1)

Modal logic over infinite trees [Clarke & Emerson 1981].

• Statements over states (Φ):
• a ∈ AP atomic proposition
• ¬Φ and Φ1 ∧ Φ2 negation and conjunction
• ∃ϕ there exists a path fulfilling ϕ
• ∀ϕ all paths fulfill ϕ

• Statements over paths (ϕ):
• ©Φ the next state fulfills Φ
• Φ1 U Φ2 Φ1 holds until a Φ2-state is reached

⇒ Note that © and U alternate with ∀ and ∃:
• ∀©©Φ, ∀∃© Φ 6∈ CTL, but ∀© ∀© Φ and ∀© ∃© Φ ∈ CTL.
• Four operators by the syntax rules:

∀© (AX ), ∀� (AG ), ∀U (AU ), ∀♦ (AF )
∃© (EX ), ∃� (EG ), ∃U (EU ), ∃♦ (EF )

• Check Example 6.2 in the book for some example formulas.
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Derived Operators

potentially Φ: ∃♦Φ = ∃(true U Φ)

inevitably Φ: ∀♦Φ = ∀(true U Φ)

potentially always Φ: ∃�Φ = ¬∀♦¬Φ

invariantly Φ: ∀�Φ = ¬∃♦¬Φ

weak until: ∃(Φ1 U Φ2) = ¬∀
(
(Φ1 ∧ ¬Φ2) U (¬Φ1 ∧ ¬Φ2)

)

∀(Φ1 U Φ2) = ¬∃
(
(Φ1 ∧ ¬Φ2) U (¬Φ1 ∧ ¬Φ2)

)

The boolean connectives are derived as usual.

Hao Zheng (CSE, USF) Comp Sys Verification 9 / 43



Example Properties in CTL

• Mutual exclusion:
∀�(¬crit1 ∨ ¬crit2)

• Starvation freedom:

(∀�∀♦crit1) ∧ (∀�∀♦crit2)

• Each red light is preceded by a yellow light:

∀�(yellow ∨ ∀© ¬red)???

• Traffic light is infinitely often green:

∀�∀♦green
• Every request is eventually granted:

∀�(request ⇒ ∀♦response)

• In every reachable state, it is possible to return to the start state:

∀�∃♦start
Hao Zheng (CSE, USF) Comp Sys Verification 10 / 43



CTL Semantics VisualizationVisualization of Semantics

8⌃ red 8(yellowU red)

9(yellowU red)9⇤ red

8⇤ red

9⌃ red

Chris J. Myers (Lecture 6: CTL) Verification of Cyber-Physical Systems 11 / 155Hao Zheng (CSE, USF) Comp Sys Verification 11 / 43



CTL Semantics - State Formulas

Defined by a relation |= such that

s |= Φ if and only if formula Φ holds in state s

s |= a iff a ∈ L(s)

s |= ¬Φ iff ¬ (s |= Φ)

s |= Φ ∧ Ψ iff (s |= Φ) ∧ (s |= Ψ)

s |= ∃ϕ iff π |= ϕ for some path π that starts in s

s |= ∀ϕ iff π |= ϕ for all paths π that start in s
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CTL Semantics - Path Formulas

Define a relation |= such that

π |= ϕ if and only if path π satisfies ϕ

π |=©Φ iff π[1] |= Φ

π |= Φ U Ψ iff (∃ j ≥ 0. π[j] |= Ψ ∧ (∀ 0 ≤ k < j. π[k] |= Φ))

where π[i] denotes the state si in the path π

Hao Zheng (CSE, USF) Comp Sys Verification 13 / 43



CTL Semantics - Transition System

Let TS = (S,Act ,→, I,AP , L) be a transition system.

• For CTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

Sat(Φ) = { s ∈ S | s |= Φ }

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS |= Φ if and only if ∀s0 ∈ I. s0 |= Φ

This is equivalent to I ⊆ Sat(Φ).

Hao Zheng (CSE, USF) Comp Sys Verification 14 / 43



CTL Semantics - Examples

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃⃝ a ∀⃝ a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }
s2

(a)

Figure 6.4: Interpretation of several CTL formulae.

∃© a

∀© a

∃�a
∀�a
∀(aU b)
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Remark 6.10 The Semantics of Negation

TS 6|= Φ and TS 6|= ¬Φ is possible due to having multiple initial states,
e.g., s0 |= ∃�Φ and s′0 6|= ∃�Φ.

328 Computation Tree Logic

– sj ̸|= Φ ∧ ¬Ψ and sj ̸|= ¬Φ ∧¬Ψ, i.e., sj |= Ψ, and

– si |= Φ ∧ ¬Ψ for all 0 ! i < j.

This is equivalent to π |= Φ U Ψ.

Gathering these results yields

π |= Φ W Ψ if and only if π |= Φ U Ψ or π |= "(Φ ∧¬Ψ),

if and only if π |= Φ U Ψ or π |= "Φ.

Thus, the CTL formula ∃(Φ W Ψ) is equivalent to ∃(Φ UΨ) ∨ ∃"Φ. In the same way, one
can check that the meaning of ∀(Φ W Ψ) is as expected, i.e., s |= ∀(Φ W Ψ) if and only if
all paths starting in s fulfill Φ W Ψ according to the LTL semantics of W .

Remark 6.10. The Semantics of Negation

For state s, we have s ̸|= Φ if and only if s |= ¬Φ. This, however, does not hold in general
for transition systems. That is to say, it is possible that the statements TS ̸|= Φ and
TS ̸|= ¬Φ both hold. This stems from the fact that there might be two initial states, s0

and s′
0, say, such that s0 |= Φ and s′

0 ̸|= Φ. Furthermore:

TS ̸|= ¬∃ϕ iff there exists a path π ∈ Paths(TS) with π |= ϕ.

This—at first glance surprising—equivalence is justified by the fact that the interpretation
of CTL state formulae over transition systems is based on a universal quantification over
the initial states. The statement TS ̸|= ¬∃ϕ thus holds if and only if there exists an initial
state s0 ∈ I with s0 ̸|= ¬∃ϕ, i.e., s0 |= ∃ϕ. On the other hand, TS |= ∃ϕ requires that
s0 |= ∃ϕ for all s0 ∈ I. Consider the following transition system:

s0

{ a }

s′
0

∅

It follows that s0 |= ∃" a, whereas s′
0 ̸|= ∃" a. Accordingly, TS ̸|= ¬∃" a and TS ̸|= ∃" a.

The semantics of CTL has been defined for a transition system without terminal states.
This has the (technically) pleasant effect that all paths are infinite and simplifies the

TS 6|= ∃�a and TS 6|= ¬∃�a

Hao Zheng (CSE, USF) Comp Sys Verification 16 / 43



6.2.3 CTL Equivalence

Definition 6.12

CTL-formulas Φ and Ψ (over AP) are equivalent, denoted Φ ≡ Ψ if
and only if Sat(Φ) = Sat(Ψ) for all transition systems TS over AP.

Φ ≡ Ψ iff (TS |= Φ if and only if TS |= Ψ)

Hao Zheng (CSE, USF) Comp Sys Verification 17 / 43



Duality Laws

∀© Φ ≡ ¬∃© ¬Φ

∃© Φ ≡ ¬∀© ¬Φ

∀♦Φ ≡ ¬∃�¬Φ

∃♦Φ ≡ ¬∀�¬Φ

∀(Φ U Ψ) ≡ ¬∃((Φ ∧ ¬Ψ) U (¬Φ ∧ ¬Ψ))

Hao Zheng (CSE, USF) Comp Sys Verification 18 / 43



Expansion Laws

Recall in LTL: ϕUψ ≡ ψ ∨ (ϕ ∧ © (ϕUψ))

In CTL:
∀(Φ U Ψ) ≡ Ψ ∨ (Φ ∧ ∀© ∀(Φ U Ψ))

∀♦Φ ≡ Φ ∨ ∀© ∀♦Φ

∀�Φ ≡ Φ ∧ ∀© ∀�Φ

∃(Φ U Ψ) ≡ Ψ ∨ (Φ ∧ ∃© ∃(Φ U Ψ))

∃♦Φ ≡ Φ ∨ ∃© ∃♦Φ

∃�Φ ≡ Φ ∧ ∃© ∃�Φ

Hao Zheng (CSE, USF) Comp Sys Verification 19 / 43



Distributive Laws (1)

Recall in LTL: �(ϕ ∧ ψ) ≡ �ϕ ∧ �ψ and ♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ

In CTL:
∀�(Φ ∧ Ψ) ≡ ∀�Φ ∧ ∀�Ψ

∃♦(Φ ∨Ψ) ≡ ∃♦Φ ∨ ∃♦Ψ

Hao Zheng (CSE, USF) Comp Sys Verification 20 / 43



Distributive Laws (2)

Note that ∃�(Φ ∧ Ψ) 6≡ ∃�Φ ∧ ∃�Ψ and
∀♦(Φ ∨ Ψ) 6≡ ∀♦Φ ∨ ∀♦Ψ.

Distributive Laws (2)

Note that 9⇤(� ^  ) 6⌘ 9⇤� ^ 9⇤ and 8⌃(� _  ) 6⌘ 8⌃� _ 8⌃ .

{a} {b}

s00 s0

s

s |= 8⌃(a _ b) since for all p 2 Paths(s).p |= ⌃(a _ b).
s (s00)w |= ⌃a but s (s00)w 6|= ⌃b, so s 6|= 8⌃b.
s (s0)w |= ⌃b but s (s0)w 6|= ⌃a, so s 6|= 8⌃a.

Therefore, s 6|= 8⌃a _ 8⌃b.

Chris J. Myers (Lecture 6: CTL) Verification of Cyber-Physical Systems 21 / 155

s |= ∀♦(a ∨ b) since

s′ |= a =⇒ s′ |= a ∨ b
s′′ |= a =⇒ s′′ |= a ∨ b

However, s 6|= ∀♦a and s 6|= ∀♦b.
Hao Zheng (CSE, USF) Comp Sys Verification 21 / 43
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Existential Normal Form (ENF) − Section 6.2.4

The set of CTL formulas in existential normal form (ENF) is given by:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2

∣∣∣ ¬Φ
∣∣∣ EX Φ

∣∣∣ ∃(Φ1 U Φ2)
∣∣∣ EG Φ

• For each CTL formula, there exists an equivalent CTL formula in ENF.

AX Φ ≡ ¬EX¬Φ

∀(Φ U Ψ) ≡ ¬∃(¬Ψ U (¬Φ ∧ ¬Ψ)) ∧ ¬EG¬Ψ

• Handle only EX Φ, EG Φ, and ∃(Φ1 U Φ2).

Hao Zheng (CSE, USF) Comp Sys Verification 23 / 43



CTL Model Checking

• How to check whether TS satisfies CTL formula Φ̂?
• Convert the formula Φ̂ into the equivalent Φ in ENF.
• Compute recursively the set Sat(Φ) = { s ∈ S | s |= Φ }.
• TS |= Φ if and only if I ⊆ Sat(Φ).

• Recursive bottom-up computation of Sat(Φ):
• Consider the parse-tree of Φ.
• Start to compute Sat(Ψi), for all leafs, then go one level up in the tree and

determine Sat(·) for these nodes, repeat until the root is computed.

e.g., Sat( Ψ1 ∧ Ψ2︸ ︷︷ ︸
node at level i

) = Sat( Ψ1︸︷︷︸
node at

level i+1

) ∩ Sat( Ψ2︸︷︷︸
node at

level i+1

)

Hao Zheng (CSE, USF) Comp Sys Verification 24 / 43



CTL Model Checking: An Example

Φ = EX a︸︷︷︸
Ψ

∧ ∃(bU EG¬c)︸ ︷︷ ︸
Ψ′′︸ ︷︷ ︸

Ψ′

.
CTL Model Checking Example

� = 9�a| {z }
 

^ 9(b U 9⇤¬c)| {z }
 00| {z }

 0

.

∧ Sat(Φ)

∃⃝Sat(Ψ) ∃U Sat(Ψ′)

a

b ∃! Sat(Ψ′′)

¬

c

Chris J. Myers (Lecture 6: CTL) Verification of Cyber-Physical Systems 34 / 155
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Theorem 6.23 Characterization of Sat (1)

For all CTL formulas Φ,Ψ over AP it holds:

Sat(true) = S

Sat(a) = { s ∈ S | a ∈ L(s) }, for any a ∈ AP

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ)

Sat(¬Φ) = S \ Sat(Φ)

Sat(EX Φ) = { s ∈ S | Post(s) ∩ Sat(Φ) 6= ∅ }

where TS = (S,Act,→, I,AP, L) is a transition system without terminal states.

Hao Zheng (CSE, USF) Comp Sys Verification 26 / 43



Theorem 6.23 Characterization of Sat (2)

• Sat(∃(Φ U Ψ)) is the smallest subset T of S, such that:

1 Sat(Ψ) ⊆ T and

2 (s ∈ Sat(Φ) and Post(s) ∩ T 6= ∅) implies s ∈ T

• Sat(EG Φ) is the largest subset T of S, such that:

1 T ⊆ Sat(Φ) and

2 s ∈ T implies Post(s) ∩ T 6= ∅

where TS = (S,Act,→, I,AP, L) is a transition system without terminal states.

Hao Zheng (CSE, USF) Comp Sys Verification 27 / 43



Algorithm 14 Computation of Sat

switch(Φ):

a : return { s ∈ S | a ∈ L(s) };
. . . : . . . . . .
EX Ψ : return { s ∈ S | Post(s) ∩ Sat(Ψ) 6= ∅ };
∃(Φ1 U Φ2) : T := Sat(Φ2); compute the smallest fixed point

while { s ∈ Sat(Φ1) \ T | Post(s) ∩ T 6= ∅ } 6= ∅ do
let s ∈ { s ∈ Sat(Φ1) \ T | Post(s) ∩ T 6= ∅ };
T := T ∪ { s };

od;
return T ;

EG Φ : T := Sat(Φ); compute the greatest fixed point
while { s ∈ T | Post(s) ∩ T = ∅ } 6= ∅ do

let s ∈ { s ∈ T | Post(s) ∩ T = ∅ };
T := T \ { s };

od;
return T ;

end switch
Hao Zheng (CSE, USF) Comp Sys Verification 28 / 43



Computing Sat(∃(ΦUΨ))− An Example

Check EF ((p = r) ∧ (p 6= q)) ≡ ∃(trueU ((p = r) ∧ (p 6= q)))
Example

{ p, q, r }

{ q, r }

{ q }

{ r } ∅

{ p }

{ p, r }

{ p, q }

let’s check the CTL-formula ∃♦((p = r)∧ (p ̸= q))

c⃝ JPK 25

s0s1

s2s3

s4

s5 s6

s7

Hao Zheng (CSE, USF) Comp Sys Verification 29 / 43



Computing Sat(∃(ΦUΨ))− Summary

• Sat(∃(Φ U Ψ)) is the smallest set T ⊆ S such that

(1) Sat(Ψ) ⊆ T and (2) {s ∈ T | s |= Φ ∧ Post(s) ∩ T 6= ∅}

• Initially, T0 = {Sat(Ψ)}.
• Iteratively compute

Ti+1 = Ti ∪ {s ∈ Sat(Φ) | Post(s) ∩ Ti 6= ∅} for i ≥ 0.

• In other words, computing Sat(∃(Φ U Ψ)) results in

T0 ⊆ T1 ⊆ . . . ⊆ Tj ⊆ Tj+1 ⊆ . . .

• Since we assume TS to be finite, there exists a j ≥ 0 such that

Tj = Tj+1 = . . . = Sat(∃(Φ U Ψ))

Hao Zheng (CSE, USF) Comp Sys Verification 30 / 43



Computing Sat(EGΦ)− An Example

Check EG q
Example

{ p, q, r }

{ q, r }

{ q }

{ r } ∅

{ p }

{ p, r }

{ p, q }

let’s check the CTL-formula ∃♦((p = r)∧ (p ̸= q))

c⃝ JPK 25

s0s1

s2s3

s4

s5 s6

s7
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Computing Sat(EGΦ)− Summary

• Sat(EG Φ) is the largest set T ⊆ S such that

(1) T ⊆ Sat(Φ) and (2) {s ∈ T | Post(s) ∩ T 6= ∅}

• Initially, T0 = Sat(Φ).

• Then, iteratively compute

Ti+1 = Ti ∩ {s ∈ Sat(Φ) | Post(s) ∩ Ti 6= ∅}

• Thus, computing Sat(EG Φ) results in

T0 ⊇ T1 ⊇ . . .

• Since we assume TS to be finite, there exists a j ≥ 0 such that

Tj = Tj+1 = . . . = Sat(EG Φ)

Hao Zheng (CSE, USF) Comp Sys Verification 32 / 43



Alternative Algorithm for Computing Sat(EGΦ)

Check EG qExample

(a)

(d)

(b)

(c)

{ q, r }

{ p, q, r }

{ p, q }

{ p, r }
{ p }

{ q }

{ r } ∅

K[q]

SCC

c⃝ JPK 29
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6.4.3 Time Complexity

For transition system TS with N states and M transitions,

and CTL formula Φ, the CTL model-checking problem TS |= Φ

can be determined in time O(|Φ |·(N +M)).

This result applies to both algorithms for EG Φ.

Hao Zheng (CSE, USF) Comp Sys Verification 34 / 43



CTL Semantics - Practice

Computation Tree Logic 325

∃ (a U (¬ a ∧ ∀(¬ a U b)))

∃⃝ a ∀⃝ a

∃! a ∀! a

∃♦ (∃! a) ∀(a U b)

TS

s1s0

{ a } { a }

s3

{ b }

{ a, b }
s2

(a)

Figure 6.4: Interpretation of several CTL formulae.

∃♦(∃�a)

∃(aU (¬a ∧ ∀(¬aU b)))

Hao Zheng (CSE, USF) Comp Sys Verification 35 / 43
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6.3 Equivalence of LTL and CTL Formulas

Definition 6.17

CTL-formula Φ and LTL-formula ϕ (both over AP) are equivalent,
denoted Φ ≡ ϕ, if for any transition system TS (over AP):

TS |= Φ if and only if TS |= ϕ

Theorem 6.18

Let Φ be a CTL-formula, and ϕ the LTL-formula obtained by
eliminating all path quantifiers in Φ. Then: [Clarke & Draghicescu]

Φ ≡ ϕ
or

there does not exist any LTL-formula that is equivalent to Φ.

Hao Zheng (CSE, USF) Comp Sys Verification 37 / 43



LTL and CTL are Incomparable

• Some LTL-formulas cannot be expressed in CTL, e.g.,
• ♦�a
• ♦(a ∧ © a)

• Some CTL-formulas cannot be expressed in LTL, e.g.,
• ∀♦∀�a
• ∀♦(a ∧ ∀© a)
• ∀�∃♦a

⇒ Cannot be expressed = there does not exist an equivalent formula.
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Comparing LTL and CTL (Lemma 6.19)

∀♦∀�a 6≡ ♦�a.

Comparing LTL and CTL (2)

8⌃8⇤a is not equivalent to ⌃⇤a.

s0 s2s1

Chris J. Myers (Lecture 6: CTL) Verification of Cyber-Physical Systems 26 / 155

s0 |= ♦�a but s0 6|= ∀♦∀�a︸ ︷︷ ︸
path sω0 violates it
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Comparing LTL and CTL (Lemma 6.20)

∀♦(a ∧ ∀© a) 6≡ ♦(a ∧ © a).

Comparing LTL and CTL (1)

8⌃(a ^ 8�a) is not equivalent to ⌃(a ^ � a).

s2

{a} {a}/0

{a}

/0

s0

s3

s4

s1
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s0 |= ♦(a ∧ © a) but s0 6|= ∀♦(a ∧ ∀© a)︸ ︷︷ ︸
path s0 s1 (s2)ω violates it
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Comparing LTL and CTL (3)

The CTL-formula ∀�∃♦a cannot be expressed in LTL

Comparing LTL and CTL (3)

The CTL-formula 8⇤9⌃a cannot be expressed in LTL

This is shown by contradiction: assume j ⌘ 8⇤9⌃a; let:

TS0TS /0{a}
s s0

/0
s

TS |= 8⇤9⌃a, and thus—by assumption—TS |= j.

Paths(TS0)✓ Paths(TS), thus TS0 |= j.

But TS0 6|= 8⇤9⌃a as path sw 6|= ⇤9⌃a.

Chris J. Myers (Lecture 6: CTL) Verification of Cyber-Physical Systems 28 / 155
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Linear-Time vs. Branching-Time Summary

Aspect Linear Time Branching Time

“behavior” path-based: state-based:
in a state s trace(s) computation tree of s

temporal LTL: path formulas ϕ CTL: state formulas
logic s |= ϕ iff existential path quantification ∃ϕ

∀π ∈ ρ(s). π |= ϕ universal path quantification: ∀ϕ

complexity of the PSPACE–complete PTIME
model checking

problems O
(
|TS| · 2|ϕ|

)
O (|TS| · |Φ|)

implementation- trace inclusion and the like simulation and bisimulation
relation (proof is PSPACE-complete) (proof in polynomial time)

fairness no special techniques special techniques needed
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Conclusion

• Branching time semantics of computation

• CTL for expressing branching time properties

• CTL model checking algorithms

• CTL and LTL are NOT comparable

Hao Zheng (CSE, USF) Comp Sys Verification 43 / 43


	Introduction (Section 6.1)
	Computation Tree Logic (Section 6.2)
	CTL - Syntax
	CTL - Semantics
	CTL Semantics - Equivalences

	CTL Model Checking (Section 6.4)
	Comparing CTL and LTL (Section 6.3)

