Computation Tree Logic

Hao Zheng

Department of Computer Science and Engineering
University of South Florida
Tampa, FL 33620
Email: zheng@cse.usf.edu
Phone: (813)974-4757
Fax: (813)974-5456

Hao Zheng (CSE, USF) Comp Sys Verification 1/43

© Introduction (Section 6.1)

© Computation Tree Logic (Section 6.2)
@ CTL - Syntax
@ CTL - Semantics
@ CTL Semantics - Equivalences

© CTL Model Checking (Section 6.4)

@ Comparing CTL and LTL (Section 6.3)

Hao Zheng (CSE, USF) Comp Sys Verification 2 /43

© Introduction (Section 6.1)

Hao Zheng (CSE, USF) Comp Sys Verification 3/43

Introduction (6.1)

e [inear temporal logic:
“Statements about (all) paths starting in a state.”

e s = O(x < 20) iff for all possible paths starting in s always = < 20.
e Quantifier ¥ is implicit: s =0(z <20) = s = VO(z < 20)

Hao Zheng (CSE, USF) Comp Sys Verification 4 /43

Introduction (6.1)

e [inear temporal logic:
“Statements about (all) paths starting in a state.”

e s = O(x < 20) iff for all possible paths starting in s always = < 20.
e Quantifier ¥ is implicit: s =0(z <20) = s = VO(z < 20)
e Branching temporal logic:
“Statements about all or some paths starting in a state.”

e s = VO(x < 20) iff for all paths starting in s always = < 20.
e s = J0(x < 20) iff for some path starting in s always = < 20.
e Nesting of path quantifiers is allowed.

Hao Zheng (CSE, USF) Comp Sys Verification 4 /43

Introduction (6.1)

e [inear temporal logic:
“Statements about (all) paths starting in a state.”
e s = O(x < 20) iff for all possible paths starting in s always = < 20.
e Quantifier ¥ is implicit: s =0(z <20) = s = VO(z < 20)
e Branching temporal logic:
“Statements about all or some paths starting in a state.”

e s = VO(x < 20) iff for all paths starting in s always = < 20.
e s = J0(x < 20) iff for some path starting in s always = < 20.
e Nesting of path quantifiers is allowed.

e Checking g in LTL can be done using V—¢, but this does not work for
nested formulas such as YOO30a.

In any state of every computation (VO), it is possible (30) to return to the
initial state.

OO0 a vs VO30 a, differenece? J

Hao Zheng (CSE, USF) Comp Sys Verification 4 /43

Computational Tree View of Transition Systems

e Semantics is based on a branching notion of time.

e An infinite tree of states obtained by unfolding the transition system.
e One “time instant” may have several possible successor “time instants”

(51.0)
(3171)
{x=0} /\
{x#0} (s2:2) (85,2)

{x=0)
{x=1,x#0}

Hao Zheng (CSE, USF) Comp Sys Verification

5 /43

Branching vs Linear Temporal Logics

Incomparable expressiveness:
e There are properties that can be expressed in LTL, but not in CTL.
e There are also properties that can be expressed in CTL, but not in LTL.

Distinct model-checking algorithms with different time/space
complexities.

e Fairness assumptions require special treatment in CTL.

e A natural part of LTL.

Equivalences and preorders between transition systems based on
simulation and bisimulation relations rather than traces.

Hao Zheng (CSE, USF) Comp Sys Verification 6 /43

© Computation Tree Logic (Section 6.2)
@ CTL - Syntax
@ CTL - Semantics
@ CTL Semantics - Equivalences

Hao Zheng (CSE, USF) Comp Sys Verification 7/43

Computational Tree Logic - Syntax (6.2.1)

Modal logic over infinite trees [Clarke & Emerson 1981].

e Statements over states (P):

e a€ AP atomic proposition
e ~dand &; A Py negation and conjunction
o Jdp there exists a path fulfilling ¢
o Vo

all paths fulfill ¢
e Statements over paths (p):

e OO the next state fulfills ®
e &; UD,y ®; holds until a ®5-state is reached

Hao Zheng (CSE, USF) Comp Sys Verification 8 /43

Computational Tree Logic - Syntax (6.2.1)

Modal logic over infinite trees [Clarke & Emerson 1981].

e Statements over states (P):

e a€ AP atomic proposition

e ~dand &; A Py negation and conjunction

o Jdp there exists a path fulfilling ¢

o Vo all paths fulfill ¢
e Statements over paths (p):

e OO the next state fulfills ®

e &; UD,y ®; holds until a ®5-state is reached

= Note that () and U alternate with V and 3:
e VO OO, VIO ¢ CTL, but VOV ®and VO IO @ € CTL.
e Four operators by the syntax rules:

VO (AX), VO (AG), VU (AU), VO (AF)
30 (EX), IO (EG), 3IU (EU), 30 (EF)

e Check Example 6.2 in the book for some example formulas.

Hao Zheng (CSE, USF) Comp Sys Verification 8 /43

Derived Operators

potentially ®: 30 = J(trueU d)

inevitably ®: VoD = V(trueUd)

potentially always ®: 3P = Voo

invariantly ®: v = -30-P

weak until: ﬂ(q)l Uq)g) = ﬁV((q)l A ﬁq)g) U (ﬁ(I)l A ﬁq)g))
V(@ UD) = —3((P1 A D) U(=Py A D))

The boolean connectives are derived as usual.

Hao Zheng (CSE, USF) Comp Sys Verification 9 /43

Example Properties in CTL

e Mutual exclusion:
VO(=erity V —erity)

Starvation freedom:

(VOVOerity) A (VOVOerita)

Each red light is preceded by a yellow light:
VO(yellow v ¥V O —red)???

Traffic light is infinitely often green:
YVO green

Every request is eventually granted:

VO(request = V{Qresponse)

In every reachable state, it is possible to return to the start state:

VO3 start

Hao Zheng (CSE, USF) Comp Sys Verification 10 / 43

CTL Semantics Visualization

@, Q @,

Joo A Y\ / /s

Jec e o Jed e o 60 C O O

3O red J0red I(yellowU red)

CAT LAY

e OO O €006 06 O o0 o @

Vo red VO red V(yellowU red)

Hao Zheng (CSE, USF) Comp Sys Verification

CTL Semantics - State Formulas

Defined by a relation = such that

] s |= @ if and only if formula ® holds in state s

skEa iff ae L(s)

sE-® iff —(skE=®)

sE® AT ff (sE®) A (sED)

s EJdop iff 7w |= ¢ for some path 7 that starts in s
s E Vo iff 7 |= ¢ for all paths 7 that start in s

Hao Zheng (CSE, USF) Comp Sys Verification 12 /43

CTL Semantics - Path Formulas

Define a relation |= such that

’ 7 = if and only if path 7 satisfies ap‘

TEO® iffr[l] @
TEQUT iff(3j> 0.7l ET A (VO<k<jalk] |E @)

where 7[i] denotes the state s; in the path =

Hao Zheng (CSE, USF) Comp Sys Verification 13 /43

CTL Semantics - Transition System

Let 'S = (S, Act,—,I, AP, L) be a transition system.
e For CTL-state-formula @, the satisfaction set Sat(®) is defined by:

Sat(®) = {se€S|sEP}
e TS satisfies CTL-formula ® iff ® holds in all its initial states:
TSE=® ifandonlyif Vspel.sop=@®

This is equivalent to I C Sat(®).

Hao Zheng (CSE, USF) Comp Sys Verification 14 / 43

CTL Semantics - Examples
a_o—=)
{a} a,b}t {a}
52

I30a
VOa
J0a
Vla
V(aUb)

Hao Zheng (CSE, USF) Comp Sys Verification 15 / 43

Remark 6.10 The Semantics of Negation

TS|~ ® and TS [~ —® is possible due to having multiple initial states,
e.g., so = 30 and s{, = 309.

S0

{a} 9

TS 30a and TS = —-30a

A
»
@]

Hao Zheng (CSE, USF) Comp Sys Verification 16 / 43

6.2.3 CTL Equivalence

Definition 6.12

CTL-formulas ® and ¥ (over AP) are equivalent, denoted ® = W if
and only if Sat(®) = Sat(V) for all transition systems TS over AP.

¢ =v iff (TSE® ifandonlyif TSEVY)

Hao Zheng (CSE, USF) Comp Sys Verification 17 / 43

Duality Laws

YOO
30®

o
¥O® = -I0-d

0P V-

V(P UT)

=3(® A “P)U (=D A 1))

Hao Zheng (CSE, USF) Comp Sys Verification 18 / 43

Expansion Laws

Recall in LTL: pUv = o V (o A O (pU))

In CTL:
V(@eUWT) = TV (@ AVYVOY(PUY))
VOd = & v VO VYOD
vOe = & A VO VvOe
JeUT) = TV (A IFOIPUTD))
00 = & v 3O I0P
Jd¢ = & A 300

Hao Zheng (CSE, USF) Comp Sys Verification 19 / 43

Distributive Laws (1)

Recall in LTL: (¢ A %)

Il
[
AN
>

Oy and O(p V ¥) = Q@ V QU

In CTL:
vOOd A VO

VO(@ A W)

I@VE) = 300 v IOT

Hao Zheng (CSE, USF) Comp Sys Verification 20 / 43

Distributive Laws (2)

Note that I0(® A ¥) # 30 A 3OV and
VO(® vV ¥) # VOP VvV VOU.

'
()

(®

{a} {p

s EVO(a V b) since

skFEa = sEaVD
"Ea = $'"EaVvd

However, s [~ VOa and s }= VOb.

Hao Zheng (CSE, USF) Comp Sys Verification 21 /43

© CTL Model Checking (Section 6.4)

Hao Zheng (CSE, USF) Comp Sys Verification 22 /43

Existential Normal Form (ENF) — Section 6.2.4

The set of CTL formulas in existential normal form (ENF) is given by:

o = true ‘ a ‘ d; A Dy ‘ P ‘ EX® ‘ E|(¢>1U<I>2) ‘ EGD

e For each CTL formula, there exists an equivalent CTL formula in ENF.

AX ® = —-EX-®
V@UT) = —3(~TU (= A —T)) A ~EG-T

e Handle only EX®, EG®, and 3(®; U ®3).

Hao Zheng (CSE, USF) Comp Sys Verification 23 /43

CTL Model Checking

e How to check whether TS satisfies CTL formula ®?
e Convert the formula ® into the equivalent @ in ENF.
e Compute recursively the set Sat(®) ={se€ S| sk P}.
e TSk @ if and only if I C Sat(®).
e Recursive bottom-up computation of Sat(®):
e Consider the parse-tree of ®.

e Start to compute Sat(¥;), for all leafs, then go one level up in the tree and
determine Sat(-) for these nodes, repeat until the root is computed.

e.g., Sat(Uy A Uy) = Sat(Uy)ﬂ Sat(W,)
—_— N N

node at level ¢ node at node at
level 741 level i+1
Hao Zheng (CSE, USF) Comp Sys Verification

24 / 43

CTL Model Checking: An Example

d = EXa A 3(bU EG—c)
\\4
\I//I
\I;/

Hao Zheng (CSE, USF) Comp Sys Verification 25 /43

Theorem 6.23 Characterization of Sat (1)

For all CTL formulas ®, ¥ over AP it holds:

Sat(true) = S
Sat(a) = {se€S|ae€ L(s)}, forany a € AP
Sat(P A W) = Sat(P) N Sat(V)
Sat(—=®) = S\ Sat(d)
Sat(EX®) = {se S| Post(s) N Sat(®) # 0}

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states.

Hao Zheng (CSE, USF) Comp Sys Verification 26 / 43

Theorem 6.23 Characterization of Sat (2)

e Sat(3(® U W)) is the smallest subset T" of S, such that:
@ Sat(V)C T and
@ (s € Sat(P) and Post(s) NT # 0) implies s € T
o Sat(EG @) is the largest subset T' of S, such that:
@ 7T C Sat(®) and
@ s € T implies Post(s) T # 0

where TS = (S, Act,—, I, AP, L) is a transition system without terminal states.

Hao Zheng (CSE, USF) Comp Sys Verification 27 / 43

Algorithm 14 Computation of Sat

switch(®):
a : return {s€ S |a€ L(s)};
EX T . return {s € S| Post(s) N Sat(V) # 0 };
(P UDy) T := Sat(Py); compute the smallest fixed point
while {s € Sat(®1) \ T | Post(s)NT # 0} # 0 do
let s {seSat(Py)\T | Post(s)yNT #0};
T:=TU{s}
od,;
return T';
EG® o T := Sat(®); compute the greatest fixed point
while {s € T'| Post(s)NT =0} # () do
let sc{scT|Post(s)yNT=0};
T:=T\{s};
od;
return T
end switch

Hao Zheng (CSE, USF) Comp Sys Verification 28 / 43

Computing Sat(3(® U ¥))— An Example

Check EF ((p=7) A (p#¢q) = 3trueU((p=r) A (p#q)))

{r} g
—
{p,q,r} (%3 @{p}

tary & {r.q}

Hao Zheng (CSE, USF)

Computing Sat(3(® U ¥))— Summary

o Sat(3(®UW)) is the smallest set T' C S such that

(1) Sat(¥)CT and (2) {s€T |skE®APost(s)NT # 0}

Initially, Ty = {Sat(¥)}.

Iteratively compute

Tiv1 =T; U{s € Sat(®) | Post(s)NT; # 0} for i > 0.

In other words, computing Sat(3(® U ¥)) results in
ToCTiC...CT; CTj1 C ...
e Since we assume TS to be finite, there exists a j > 0 such that

T;=Tjs1 = ... = Sat(3(®UW))

Hao Zheng (CSE, USF) Comp Sys Verification 30 /43

Computing Sat(EG ®)— An Example

Check EGg¢q

Hao Zheng (CSE, USF) Comp Sys Verification

Computing Sat(EG ¢)— Summary

o Sat(EG®) is the largest set T C S such that

(1) T C Sat(®) and (2) {se€T | Post(s)NT # 0}

Initially, Ty = Sat(®).

Then, iteratively compute

Tiv1 =T;N{s € Sat(P) | Post(s) NT; # 0}

Thus, computing Sat(EG @) results in
To2T1 D ...
e Since we assume TS to be finite, there exists a j7 > 0 such that

Tj =Tj41 = ... = Sat(EG ®)

Hao Zheng (CSE, USF) Comp Sys Verification

32 /43

Alternative Algorithm for Computing Sat(EG @)

Check EGg¢q

{r} >

{p,q,7} {p}
{Q} {p,r}
{ar} {p,q}
() (b) Klq]
k@ : ¥
(c) scc (d)

Hao Zheng (CSE, USF) Comp Sys Verification 33 /43

6.4.3 Time Complexity

For transition system TS with IV states and M transitions,
and CTL formula @, the CTL model-checking problem TS |= ®
can be determined in time O(| ® |-(N + M)).

This result applies to both algorithms for EG ®.

Hao Zheng (CSE, USF) Comp Sys Verification 34 /43

CTL Semantics - Practice

30(30a)
F(aU(—a A V(-aUb)))

Hao Zheng (CSE, USF) Comp Sys Verification 35 /43

@ Comparing CTL and LTL (Section 6.3)

Hao Zheng (CSE, USF) Comp Sys Verification 36 / 43

6.3 Equivalence of LTL and CTL Formulas

Definition 6.17

CTL-formula ® and LTL-formula ¢ (both over AP) are equivalent,
denoted ® = ¢, if for any transition system TS (over AP):

TSE=® ifandonlyif TSk

Theorem 6.18

Let ® be a CTL-formula, and ¢ the LTL-formula obtained by
eliminating all path quantifiers in ®. Then: [Clarke & Draghicescu]

® = o
or
there does not exist any LTL-formula that is equivalent to ®.

Hao Zheng (CSE, USF) Comp Sys Verification 37 /43

LTL and CTL are Incomparable

e Some LTL-formulas cannot be expressed in CTL, e.g.,

e Oa
* Ola A Oa)
e Some CTL-formulas cannot be expressed in LTL, e.g.,
e VOVOa
e VO(a A V(O a)
e VOd40a

= Cannot be expressed = there does not exist an equivalent formula.

Hao Zheng (CSE, USF) Comp Sys Verification

38 /43

Comparing LTL and CTL (Lemma 6.19)

YOVOa # Oa.

e

So Sq So

Hao Zheng (CSE, USF) Comp Sys Verification

Comparing LTL and CTL (Lemma 6.19)

YOVOa # Oa.

e

So Sq So

so = O00a but s = VOVOa

N——
path sy violates it

Hao Zheng (CSE, USF) Comp Sys Verification 39 /43

Comparing LTL and CTL (Lemma 6.20)

Vo(a A VOa) # Ola A Oa).

0
S2 51 \1/ ?
go—" sO
0 {a} {a}

Hao Zheng (CSE, USF)

Comparing LTL and CTL (Lemma 6.20)

Vo(a A VOa) # Ola A Oa).

0
S2 51 \1/ ?
go—" sO
0 {a} {a}
{a}

soEQO(@ AN Oa) but soEYO(a A VOa)

path sg s1 (s2)« violates it

Hao Zheng (CSE, USF)

Comparing LTL and CTL (3)

’The CTL-formula VO30a cannot be expressed in LTL

TS %@ é{a}

Hao Zheng (CSE, USF) Comp Sys Verification 41 / 43

Linear-Time vs. Branching-Time Summary

Aspect Linear Time Branching Time
“behavior” path-based: state-based:
in a state s trace(s) computation tree of s
temporal LTL: path formulas ¢ CTL: state formulas
logic skEe iff existential path quantification Jp

Vi €p(s).mE¢

universal path quantification: V¢

complexity of the

model checking

problems

PSPACE—-complete

o (|7-5| . glw\)

PTIME

O (TS| -|®])

implementation-
relation

trace inclusion and the like
(proof is PSPACE-complete)

simulation and bisimulation
(proof in polynomial time)

fairness

no special techniques

special techniques needed

Hao Zheng (CSE, USF)

Comp Sys Verification

42 /43

Conclusion

Branching time semantics of computation

CTL for expressing branching time properties

CTL model checking algorithms

CTL and LTL are NOT comparable

Hao Zheng (CSE, USF) Comp Sys Verification 43 / 43

	Introduction (Section 6.1)
	Computation Tree Logic (Section 6.2)
	CTL - Syntax
	CTL - Semantics
	CTL Semantics - Equivalences

	CTL Model Checking (Section 6.4)
	Comparing CTL and LTL (Section 6.3)

