
CDA 5416 Computer System Verification
Bounded Model Checking

Hao Zheng

Department of Computer Science and Engineering
University of South Florida

H. Zheng (CSE USF) CDA 5416 CAV 1 / 26

Introduction

• Model Checking is used for exhaustive verification.
• Difficult to scale (state explosion).

• OBDDs are a canonical representation.
• Canonicity makes equivalence checking easier.
• A variable ordering is required.

• Variable ordering is also a serious restriction.
• Finding an optimal ordering is time consuming.
• No good orderings exist for certain applications.

H. Zheng (CSE USF) CDA 5416 CAV 2 / 26

Bounded Model Checking

• Targeted to find bugs, not to achieve the complete correctness proof.

• Finds bugs in a bounded number of executions.

• Can discover shallow bugs quickly.

+ Always finds the shortest counter-examples.

• Based on the latest advances in Boolean satisfiability (SAT/SMT)
solving.

• High memory demand is alleviated, but runtime may be a serious
problem.

H. Zheng (CSE USF) CDA 5416 CAV 3 / 26

SAT Solving and Model Checking

• Boolean satisfiability answers whether a variable assignment exists to
make a Boolean formula be true.
• A classic NP-complete problem.

• Boolean SAT solving has become very efficient in practice.
• Can readily handle formulas with tens of thousands of variables.
• Much more space efficient than OBDDs.

• Many model checking problems can be converted to SAT solving.

• SAT-based BMC
• Encodes all paths in a TS upto a bound k into a Boolean formula.
• Encodes negation of properties along the k−path formula.
• Searches counter-examples by using SAT solving on the formula.

H. Zheng (CSE USF) CDA 5416 CAV 4 / 26

BMC: An Illustrating Example

• Check if the circuit satisfies ∀�¬q.

q = (w ⊕ y ∨ x) ∧ ¬(x ∨ w)

H. Zheng (CSE USF) CDA 5416 CAV 5 / 26

Circuit Initial State

w0 = ∗

q0 = (w0 ⊕ y0 ∨ x0) ∧ ¬(x0 ∨ w0) = 0

H. Zheng (CSE USF) CDA 5416 CAV 6 / 26

Circuit State after Cycle 1

• q1 = 1 if w0 = 1 in the initial state and w1 = 0 in cycle 1.

• A counter-example to ∀�¬q is a 2-state sequence.

H. Zheng (CSE USF) CDA 5416 CAV 7 / 26

Big Picture of Bounded Model Checking

Comb.
Logic

I0 o0

S0
S1

Comb.
Logic

I1 o1

Comb.
Logic

I2 o2

S2 S3

H. Zheng (CSE USF) CDA 5416 CAV 8 / 26

How BMC Works

H. Zheng (CSE USF) CDA 5416 CAV 9 / 26

Boolean Encoding of Bounded Model Checking

Given a M = (I,∆), an LTL formula f and a bound k, BMC generates a
Boolean formula [M,¬f]k such that

[M,¬f]k is satisfiable ⇔ A count-example of length k exists

• [M]k: all k−paths in M(I,∆).

[M]k = I(~x0) ∧∆(~x0, ~x1)︸ ︷︷ ︸
step 1

∧ . . . ∧∆(~xk−1, ~xk)︸ ︷︷ ︸
step k

∧ ∆(~xk, ~xl)︸ ︷︷ ︸
backedge k to l

• Encoding of ¬f over [M]k.
• [¬f]k : encoding of ¬f on k−paths.
• l[¬f]k : encoding of ¬f on k−loops.

H. Zheng (CSE USF) CDA 5416 CAV 10 / 26

k−Bounded Paths

• A k−bounded path is a sequence of k state transitions.

[M]k = I(~x0) ∧∆(~x0, ~x1)︸ ︷︷ ︸
step 1

∧ . . . ∧∆(~xk−1, ~xk)︸ ︷︷ ︸
step k

H. Zheng (CSE USF) CDA 5416 CAV 11 / 26

k−Bounded Loops

• A finite path is infinite if it has a back loop.

• A (k, l)−loop is a k−bounded path ρ such that R(sk, sl) holds.

[M]k = I(~x0) ∧∆(~x0, ~x1)︸ ︷︷ ︸
step 1

∧ . . . ∧∆(~xk−1, ~xk)︸ ︷︷ ︸
step k

∧ ∆(~xk, ~xl)︸ ︷︷ ︸
backedge k to l

• A path ρ is a k−loop if there exists 0 ≤ l ≤ k such that ρ is a
(k, l)−loop.

[M]k = I(~x0) ∧∆(~x0, ~x1)︸ ︷︷ ︸
step 1

∧ . . .∧∆(~xk−1, ~xk)︸ ︷︷ ︸
step k

∧ ∀0 ≤ l ≤ k, ∆(~xk, ~xl)︸ ︷︷ ︸
backedge k to l

H. Zheng (CSE USF) CDA 5416 CAV 12 / 26

Bounded Semantics of LTL Formulas

• Let ρ |=k f denote the truth of the LTL formula f over the k−bounded
path ρ.
• Evaluate f only in the first k + 1 states on ρ.

• Let ρ(i) denote the ith state on ρ.

• Let ρ |=i
k f denote the truth of f over the path from state ρ(i) to ρ(k).

• If a path ρ is a k−loop,

ρ |=k f ⇔ ρ |= f

H. Zheng (CSE USF) CDA 5416 CAV 13 / 26

Bounded Semantics of LTL Formulas (2)

• ρ |=k f ⇔ ρ |=0
k f where

ρ |=i
k p ⇔ p ∈ L(ρ(i))

ρ |=i
k ¬p ⇔ p 6∈ L(ρ(i))

ρ |=i
k f ∧ g ⇔ ρ |=i

k f and ρ |=i
k g

ρ |=i
k f ∨ g ⇔ ρ |=i

k f or ρ |=i
k g

ρ |=i
k �f ⇔ false

ρ |=i
k ♦f ⇔ ∃i ≤ j ≤ k, ρ |=j

k f

ρ |=i
k ©f ⇔ i < k and ρ |=i+1

k f

ρ |=i
k f U g ⇔ ∃i ≤ j ≤ k, ρ |=j

k f and ∀i ≤ n ≤ j.ρ |=n
k f

where p is an atomic proposition.

H. Zheng (CSE USF) CDA 5416 CAV 14 / 26

Bounded Model Checking of LTL

• Let M |=k f denote a k−bounded model checking problem for the LTL
formula f .
• Formula f is evaluated on all k−bounded path.

• Let f be a LTL formula and ρ a path.

ρ |=k ¬f ⇒ ρ |= ¬f

• If there is a ρ in M such that ρ |=k ¬f , then M |= f does not hold.

Search for k-bounded counter-example.

• M |= f ⇔ ∃k ≥ 0, M |=k f .
• There always exists a k such that the result of bounded model checking is

equivalent to that of the complete one.
• Finding the completeness threshold is difficult.

H. Zheng (CSE USF) CDA 5416 CAV 15 / 26

An BMC Example: Translation

• M |= �¬(a ∧ b) for k = 2.

• M = (I,∆) where

I = ¬a ∧ ¬b
∆ = (¬a ∧ ¬b ∧ a′ ∧ ¬b′) ∨ (¬a ∧ ¬b ∧ ¬a′ ∧ b′)∨

(¬a ∧ b ∧ ¬a′ ∧ ¬b′) ∨ (a ∧ ¬b ∧ ¬a′ ∧ ¬b′)∨
(a ∧ ¬b ∧ a′ ∧ b′) ∨ (a ∧ b ∧ ¬a′ ∧ ¬b′)

H. Zheng (CSE USF) CDA 5416 CAV 16 / 26

An BMC Example

• M |= �¬(a ∧ b).

• BMC checks if there is a bounded path on which ♦(a ∧ b) holds.

Check if I(a0, b0) ∧ (a0 ∧ b0) is satisfiable?

H. Zheng (CSE USF) CDA 5416 CAV 17 / 26

An BMC Example − Cont’d

• M |=k=1 �¬(a ∧ b).
• Check if the following formula is satisfiable?

I(a0, b0) ∧∆(a0, b0, a1, b1) ∧ (a1 ∧ b1)

H. Zheng (CSE USF) CDA 5416 CAV 18 / 26

An BMC Example − Cont’d

• M |=k=2 �¬(a ∧ b).
• Check if the following formula is satisfiable?

I(a0, b0) ∧∆(a0, b0, a1, b1) ∧∆(a1, b1, a2, b2) ∧ (a2 ∧ b2)

H. Zheng (CSE USF) CDA 5416 CAV 18 / 26

Bounded Model Checking: Overview

H. Zheng (CSE USF) CDA 5416 CAV 19 / 26

Generalization of BMC

• Key idea of BMC: impose bounds on aspects of system behavior.

• Two generalizations:
• Bounded model checking of sequential software
• Context bounded model checking of concurrent software

H. Zheng (CSE USF) CDA 5416 CAV 20 / 26

Bounded Model Checking for Software

CBMC is a bounded model checker for ANSI-C programs.

• Handles function calls using inlining.

• Unwinds the loops a fixed number of times.

• Allows user input to be modeled using non-determinism.
• So that a program can be checked for a set of inputs rather than a single

input

• Allows specification of assertions which are checked using the bounded
model checking

• It targets sequential programs

H. Zheng (CSE USF) CDA 5416 CAV 21 / 26

Loops and Recursive Functional Calls

• Unwind the loop n times by duplicating the loop body n times
• Each copy is guarded using an if statement that checks the loop condition.

• At the end of the n repetitions an unwinding assertion is added which is
the negation of the loop condition
• Hence if the loop iterates more than n times in some execution, the

unwinding assertion will be violated and we know that we need to increase
the bound in order to guarantee correctness

• A similar strategy is used for recursive function calls.
• The recursion is unwound up to a certain bound and then an assertion is

generated stating that the recursion does not go any deeper.

H. Zheng (CSE USF) CDA 5416 CAV 22 / 26

A Simple Loop Example

x = 0;

while (x < 2) {

y = y+x;

x++;

}

x=0;

if (x < 2) {

y=y+x;

x++;

}

if (x < 2) {

y=y+x;

x++;

}

if (x < 2) {

y=y+x;

x++;

}

assert(x >= 2);

H. Zheng (CSE USF) CDA 5416 CAV 23 / 26

Encoding the C Programs

• After eliminating loops and recursion, CBMC converts the input
program to the static single assignment (SSA) form
• In SSA each variable appears at the left hand side of an assignment only

once
• This is a standard program transformation that is performed by creating

new variables

• In the resulting program each variable is assigned a value only once and
all the branches are forward branches (there is no backward edge in the
control flow graph)

• CBMC generates a Boolean logic formula from the program using bit
vectors to represent variables

H. Zheng (CSE USF) CDA 5416 CAV 24 / 26

Encoding: A Simple Example

Original Code

x = x + y;

if (x != 1) {

x = 2;

else

x++;

Assert (x <= 3);

Code in SSA format

x1 = x0 + y0;

if (x1 != 1) {

x2 = 2;;

else

x3 = x1 + 1;

x4 = (x1 != 1) ? x2 : x3

assert (x4 <= 3);

• Generated Constraints:

Program C x1 = x0 + y0 ∧ (x1 6= 1→ x2 = 2)
∧ (x1 = 1→ x3 = x1 + 1) ∧
(x1 6= 1 ∧ x4 = x2 ∨ x1 = 1 ∧ x4 = x3)

Assertion P x4 ≤ 3

H. Zheng (CSE USF) CDA 5416 CAV 25 / 26

Encoding: A Simple Example

Original Code

x = x + y;

if (x != 1) {

x = 2;

else

x++;

Assert (x <= 3);

Code in SSA format

x1 = x0 + y0;

if (x1 != 1) {

x2 = 2;;

else

x3 = x1 + 1;

x4 = (x1 != 1) ? x2 : x3

assert (x4 <= 3);

• BMC checks C ∧ ¬P . Assertion P is violated if C ∧ ¬P is satisfiable.

H. Zheng (CSE USF) CDA 5416 CAV 25 / 26

BMC of Multi-Threaded Programs

• First, convert a MT program into an equivalent sequential program.

• Next, apply encoding previous techniques to generate a BMC problem.

• Complexity is much higher.

H. Zheng (CSE USF) CDA 5416 CAV 26 / 26

