CDA 5416 Computer System Verification Bounded Model Checking

Hao Zheng

Department of Computer Science and Engineering University of South Florida

- Model Checking is used for exhaustive verification.
	- Difficult to scale (state explosion).
- OBDDs are a canonical representation.
	- Canonicity makes equivalence checking easier.
	- A variable ordering is required.
- Variable ordering is also a serious restriction.
	- Finding an optimal ordering is time consuming.
	- No good orderings exist for certain applications.
- Targeted to find bugs, not to achieve the complete correctness proof.
- Finds bugs in a bounded number of executions.
- Can discover shallow bugs quickly.
	- $+$ Always finds the shortest counter-examples.
- Based on the latest advances in Boolean satisfiability (SAT/SMT) solving.
- High memory demand is alleviated, but runtime may be a serious problem.
- Boolean satisfiability answers whether a variable assignment exists to make a Boolean formula be true.
	- A classic NP-complete problem.
- Boolean SAT solving has become very efficient in practice.
	- Can readily handle formulas with tens of thousands of variables.
	- Much more space efficient than OBDDs.
- Many model checking problems can be converted to SAT solving.
- SAT-based BMC
	- Encodes all paths in a TS upto a bound k into a Boolean formula.
	- Encodes negation of properties along the $k-p$ ath formula.
	- Searches counter-examples by using SAT solving on the formula.

BMC: An Illustrating Example

• Check if the circuit satisfies $\forall \Box \neg q$.

W x' X

 $q = (w \oplus y \vee x) \wedge \neg (x \vee w)$

Initial state: x=0, y=0.

Circuit Initial State

Circuit State after Cycle 1

- $\bullet\,\,q^1=1$ if $w^0=1$ in the initial state and $w^1=0$ in cycle 1.
- A counter-example to $\forall \Box \neg q$ is a 2-state sequence.

Big Picture of Bounded Model Checking

How BMC Works

Given a $M = (I, \Delta)$, an LTL formula f and a bound k, BMC generates a Boolean formula $[M, \neg f]_k$ such that

 $[M, \neg f]_k$ is satisfiable \iff A count-example of length k exists

• $[M]_k$: all k–paths in $M(I,\Delta)$.

$$
[M]_k = \underbrace{I(\vec{x}_0) \wedge \Delta(\vec{x}_0, \vec{x}_1)}_{step \ 1} \wedge \ldots \wedge \underbrace{\Delta(\vec{x}_{k-1}, \vec{x}_k)}_{step \ k} \wedge \underbrace{\Delta(\vec{x}_k, \vec{x}_l)}_{background \ k \ to \ l}
$$

- Encoding of $\neg f$ over $[M]_k$.
	- $[\neg f]_k$: encoding of $\neg f$ on k -paths.
	- $\iota[\neg f]_k$: encoding of $\neg f$ on $k-$ loops.

• A $k-$ bounded path is a sequence of k state transitions.

k−Bounded Loops

• A finite path is infinite if it has a back loop.

• A (k, l) -loop is a k -bounded path ρ such that $R(s_k, s_l)$ holds.

$$
[M]_k = \underbrace{I(\vec{x}_0) \wedge \Delta(\vec{x}_0, \vec{x}_1)}_{step \ 1} \wedge \ldots \wedge \underbrace{\Delta(\vec{x}_{k-1}, \vec{x}_k)}_{step \ k} \wedge \underbrace{\Delta(\vec{x}_k, \vec{x}_l)}_{background \ }.
$$

• A path ρ is a k-loop if there exists $0 \leq l \leq k$ such that ρ is a (k, l) −loop.

$$
[M]_k = \underbrace{I(\vec{x}_0) \wedge \Delta(\vec{x}_0, \vec{x}_1)}_{step \ 1} \wedge \ldots \wedge \underbrace{\Delta(\vec{x}_{k-1}, \vec{x}_k)}_{step \ k} \wedge \underbrace{\forall 0 \leq l \leq k, \ \Delta(\vec{x}_k, \vec{x}_l)}_{background \ (background \ (l = 1, 2, 3) }.
$$

H. Zheng (CSE USF) [CDA 5416 CAV](#page-0-0) 12 / 26

- Let $\rho \models_k f$ denote the truth of the LTL formula f over the k−bounded path ρ .
	- Evaluate f only in the first $k + 1$ states on ρ .
- Let $\rho(i)$ denote the i^{th} state on $\rho.$
- Let $\rho \models^i_k f$ denote the truth of f over the path from state $\rho(i)$ to $\rho(k).$
- If a path ρ is a $k-$ loop,

$$
\rho \models_k f \ \ \Leftrightarrow \ \ \rho \models f
$$

•
$$
\rho \models_k f \Leftrightarrow \rho \models_k^0 f
$$
 where

$$
\rho \models_k^i p \qquad \Leftrightarrow \quad p \in L(\rho(i))
$$
\n
$$
\rho \models_k^i \neg p \qquad \Leftrightarrow \quad p \notin L(\rho(i))
$$
\n
$$
\rho \models_k^i f \land g \qquad \Leftrightarrow \quad \rho \models_k^i f \text{ and } \rho \models_k^i g
$$
\n
$$
\rho \models_k^i f \lor g \qquad \Leftrightarrow \quad \rho \models_k^i f \text{ or } \rho \models_k^i g
$$
\n
$$
\rho \models_k^i \Box f \qquad \Leftrightarrow \quad \text{false}
$$
\n
$$
\rho \models_k^i \Diamond f \qquad \Leftrightarrow \quad \exists i \leq j \leq k, \ \rho \models_k^j f
$$
\n
$$
\rho \models_k^i \bigcirc f \qquad \Leftrightarrow \quad i < k \text{ and } \rho \models_k^{i+1} f
$$
\n
$$
\rho \models_k^i f \cup g \qquad \Leftrightarrow \quad \exists i \leq j \leq k, \ \rho \models_k^j f \text{ and } \forall i \leq n \leq j \rho \models_k^n f
$$

where p is an atomic proposition.

Bounded Model Checking of LTL

- Let $M \models_k f$ denote a k–bounded model checking problem for the LTL formula f.
	- Formula f is evaluated on all $k-$ bounded path.
- Let f be a LTL formula and ρ a path.

$$
\rho \models_k \neg f \quad \Rightarrow \quad \rho \models \neg f
$$

- If there is a ρ in M such that $\rho \models_k \neg f$, then $M \models f$ does not hold. Search for k-bounded counter-example.
- $M \models f \Leftrightarrow \exists k \geq 0, M \models_k f$.
	- There always exists a k such that the result of bounded model checking is equivalent to that of the complete one.
	- Finding the completeness threshold is difficult.

An BMC Example: Translation

- $M \models \Box \neg (a \land b)$ for $k = 2$.
- $M = (I, \Delta)$ where

$$
I = \neg a \wedge \neg b
$$

\n
$$
\Delta = (\neg a \wedge \neg b \wedge a' \wedge \neg b') \vee (\neg a \wedge \neg b \wedge \neg a' \wedge b') \vee
$$

\n
$$
(\neg a \wedge b \wedge \neg a' \wedge \neg b') \vee (a \wedge \neg b \wedge \neg a' \wedge \neg b') \vee
$$

\n
$$
(a \wedge \neg b \wedge a' \wedge b') \vee (a \wedge b \wedge \neg a' \wedge \neg b')
$$

An BMC Example

- $M \models \Box \neg (a \land b).$
- BMC checks if there is a bounded path on which $\Diamond(a \land b)$ holds.

Check if $I(a_0, b_0) \wedge (a_0 \wedge b_0)$ is satisfiable?

An BMC Example − Cont'd

•
$$
M \models_{k=1} \Box \neg (a \land b)
$$
.

• Check if the following formula is satisfiable?

 $I(a_0, b_0) \wedge \Delta(a_0, b_0, a_1, b_1) \wedge (a_1 \wedge b_1)$

An BMC Example − Cont'd

•
$$
M \models_{k=2} \Box \neg (a \land b)
$$
.

• Check if the following formula is satisfiable?

 $I(a_0, b_0) \wedge \Delta(a_0, b_0, a_1, b_1) \wedge \Delta(a_1, b_1, a_2, b_2) \wedge (a_2 \wedge b_2)$

Bounded Model Checking: Overview

- Key idea of BMC: impose bounds on aspects of system behavior.
- Two generalizations:
	- Bounded model checking of sequential software
	- Context bounded model checking of concurrent software

CBMC is a bounded model checker for ANSI-C programs.

- Handles function calls using inlining.
- Unwinds the loops a fixed number of times.
- Allows user input to be modeled using non-determinism.
	- So that a program can be checked for a set of inputs rather than a single input
- Allows specification of assertions which are checked using the bounded model checking
- It targets sequential programs
- Unwind the loop n times by duplicating the loop body n times
	- Each copy is guarded using an if statement that checks the loop condition.
- At the end of the n repetitions an unwinding assertion is added which is the negation of the loop condition
	- Hence if the loop iterates more than n times in some execution, the unwinding assertion will be violated and we know that we need to increase the bound in order to guarantee correctness
- A similar strategy is used for recursive function calls.
	- The recursion is unwound up to a certain bound and then an assertion is generated stating that the recursion does not go any deeper.

$$
x = 0;
$$

while $(x < 2) \{$
 $y = y+x;$
 $x++;$
}}

x=0; if (x < 2) { y=y+x; x++; } if (x < 2) { y=y+x; x++; } if (x < 2) { y=y+x; x++; } assert(x >= 2);

- After eliminating loops and recursion, CBMC converts the input program to the static single assignment (SSA) form
	- In SSA each variable appears at the left hand side of an assignment only once
	- This is a standard program transformation that is performed by creating new variables
- In the resulting program each variable is assigned a value only once and all the branches are forward branches (there is no backward edge in the control flow graph)
- CBMC generates a Boolean logic formula from the program using bit vectors to represent variables

Encoding: A Simple Example

Original Code $x = x + y;$ if $(x := 1)$ { $x = 2$; else x++; Assert $(x \leq 3)$; Code in SSA format $x1 = x0 + y0$; if $(x1 := 1)$ { $x2 = 2$;; else $x3 = x1 + 1$; $x4 = (x1 \mid 1)$? $x2 : x3$ assert $(x4 \leq 3)$;

• Generated Constraints:

Program C

\n
$$
x_1 = x_0 + y_0 \wedge (x_1 \neq 1 \rightarrow x_2 = 2)
$$
\n
$$
\wedge (x_1 = 1 \rightarrow x_3 = x_1 + 1) \wedge
$$
\n
$$
(x_1 \neq 1 \wedge x_4 = x_2 \vee x_1 = 1 \wedge x_4 = x_3)
$$
\nAssertion P

\n
$$
x_4 \leq 3
$$

• BMC checks $C \wedge \neg P$. Assertion P is violated if $C \wedge \neg P$ is satisfiable.

- First, convert a MT program into an equivalent sequential program.
- Next, apply encoding previous techniques to generate a BMC problem.
- Complexity is much higher.