Background Review Read Appendix

Hao Zheng

Department of Computer Science and Engineering
University of South Florida
Tampa, FL 33620
Email: zheng@cse.usf.edu
Phone: (813)974-4757
Fax: (813)974-5456

Propositional Logic

Propositions

- A logic statement or proposition evaluates to true or false.
- Example: which of the following is a proposition?
- Two plus two equals four
- $2+3=4$
- Tampa is south to Boston.
- He is a college student
- $x+y>0$

Propositions

- Compound propositions can be constructed from simple ones with three symbols (logic connectives):
- \neg : not; \wedge : and; \vee : or.
- Given two propositions p and q,
- $\neg p$: the negation of p.
- $p \wedge q$: the conjunction of p and q.
- $p \vee q$: the disjunction of p and q.
- Order of operations: in an expression with \neg, \wedge and \vee, \neg applies first.
- Use () to avoid ambiguity in $p \wedge q \vee r$.

Logical Equivalence

Two propositions are called logically equivalent if, and only if, they have identical truth values for each possible truth assignment for their proposition variables. The logical equivalence of statements P and Q is denoted by writing $P \equiv Q$.

- Ex.: $p \wedge q \equiv q \wedge p$.

De Morgan's Law

- The negation of an and proposition is logically equivalent to the or proposition in which each component is negated.

$$
\neg(p \wedge q) \equiv \neg p \vee \neg q
$$

- The negation of an or proposition is logically equivalent to the and proposition in which each component is negated.

$$
\neg(p \vee q) \equiv \neg p \wedge \neg q
$$

Tautologies and Contradictions

- A proposition is a tautology (valid) if it is always true regardless of the truth values of the individual propositions substituted for its proposition variables. A tautology is denoted by \mathbf{t}.

$$
p \vee \neg p \equiv \mathbf{t}
$$

- A proposition is a contradiction if it is always false regardless of the truth values of the individual propositions substituted for its proposition variables. A contradiction is denoted by \mathbf{c}

$$
p \wedge \neg p \equiv \mathbf{c}
$$

- A proposition is satisfiable if there is at least one combination of values to the propositional variables that makes the formula be true. Ex.: $(a \vee b) \wedge c$
- Equivalences: $p \wedge \mathbf{t} \equiv p$, and $p \wedge \mathbf{c} \equiv \mathbf{c}$.
- What about $p \vee \mathbf{t} \equiv$?, and $p \vee \mathbf{c} \equiv$?

Conditional Propositions

- In a conditional proposition, a conclusion is derived from some hypotheses.

- If p and q are propositions, the conditional of q by p is "If p then q " or " p implies q " and is denoted $p \rightarrow q$.

p	q	$p \rightarrow q$
F	F	T
F	T	T
T	F	F
T	T	T

- p : hypothesis or antecedent
- q : conclusion or consequent

Vacuously True Conditional propositions

- Representing conditional propositions using OR

$$
p \rightarrow q \equiv \neg p \vee q
$$

- $p \rightarrow q$ is vacuously true if p is false.
- Example:

$$
\text { if } 0=1 \text {, then } 1=2 \text {. }
$$

- Order of operations: \neg applies first, \wedge, \vee and \oplus next, \rightarrow applies the last.

Predicate Logic

Predicates

A predicate is a sentence that contains a finite number of variables and becomes a proposition when specific values are substituted for the variables.

The domain of a predicate variable is the set of all values that may be substituted in place of the variable.

Example:

- Let $P(x)$ be $x^{2}>x$ where x is some real number where P is a predicate symbol.
- $P(x)$ becomes a proposition when a specific value is assigned to x.

Universal Quantifiers and Statements

- A predicate becomes a statements when all predicate variables are assigned with specific values.
- Alternatively, use quantifiers.
- Universal quantifier \forall : "for all", "for each", "for any", "given any", etc
- Consider

$$
\forall \text { integer } x \in \mathbb{Z}, x>0
$$

Think of x as an individual but generic object: an arbitrarily chosen integer.

Universal Quantifiers and Statements

- Let $Q(x)$ be a predicate and D the domain of x.
- A universal statement is a statement of the form
" $\forall x \in D, Q(x)$, It is defined to be true if, and only if, $Q(x)$ is true for every x in D. It is defined to be false if, and only if, $Q(x)$ is false for at lease one x in D.

$$
\forall x \in D, Q(x) \equiv Q\left(v_{1}\right) \wedge Q\left(v_{2}\right) \wedge \ldots
$$

- A counter-example to a universal proposition is a value $x \in D$ such that $Q(x)$ is false.

Existential Quantifiers and Statements

Existential quantifier \exists : "there exists", "there is a", "for some", " there is at least one", etc.

- Let $Q(x)$ be a predicate and D the domain of x.
- An existential statement is a statement of the form " $\exists x \in D$ such that $Q(x)$ ". It is defined to be true if, and only if, $Q(x)$ is true for at lease one x in D. It is defined to be false if, and only if, $Q(x)$ is false for all x in D.

$$
\exists x \in D, Q(x) \equiv Q\left(v_{1}\right) \vee Q\left(v_{2}\right) \vee \ldots
$$

- A witness of an existential proposition is a value $x \in D$ such that $Q(x)$ is true.

Important Equivalences

$$
\begin{aligned}
\forall x \cdot f(x) \circ g(y) & \equiv(\forall x \cdot f(x)) \circ g(y) \\
\exists x \cdot f(x) \circ g(y) & \equiv(\exists x \cdot f(x)) \circ g(y) \\
\forall x . f(x) \wedge \forall x, g(x) & \equiv \forall x \cdot(f(x) \wedge g(x)) \\
\exists x . f(x) \vee \exists x(x), g(x) & \equiv \exists x \cdot(f(x) \vee g(x))
\end{aligned}
$$

Set Theory

Set Builder Notations

- A set is a collection of things called elements or members.
- Let S denote a set and let $P(x)$ be a property of the elements of S. We may define a new set to be the set of all elements x in S such that $P(x)$ is true. We denote this set as follows:

$$
\{x \in S \mid P(x)\}
$$

It reads as "the set of elements x such that $P(x)$ is true.

- Example:

$$
Z_{1}=\{x \in \mathbb{Z} \mid x \geq 5\}
$$

Subsets

- Subsets Given two sets A and B, A is called a subset of B, written $A \subseteq B$, if, and only if, every element of A is also an element of B.

$$
A \subseteq B \quad \Leftrightarrow \quad \forall x \text {, if } x \in A \text {, then } x \in B
$$

The negation

$$
A \nsubseteq B \Leftrightarrow \exists x \text { st } x \in A \wedge x \notin B .
$$

- Proper subsets Given two sets A and B, A is a proper subset of B, written $A \subset B$, if and only if, every element of A is in B but there is at least one element of B that is not in A. Symbolically,

$$
A \subset B \quad \Leftrightarrow \quad A \subseteq B \wedge B \nsubseteq A
$$

Sets Equality

Given sets A and B, A equals B, written $A=B$, if and only if, every element of A is in B and every element of B is in A. Or symbolically,

$$
A=B \quad \Leftrightarrow \quad A \subseteq B \text { and } B \subseteq A
$$

- Two sets are equal if they contain exactly the same elements.

Set Operations

- Universal set (\mathbb{U}) : the set of all elements being considered in the context.
- Intersection: $A \cap B=\{x \in \mathbb{U} \mid x \in A$ and $x \in B\}$.
- Union: $A \cup B=\{x \in \mathbb{U} \mid x \in A$ or $x \in B\}$.
- Difference: $A-B=\{x \in \mathbb{U} \mid x \in A$ and $x \notin B\}$.
- Complement: $A^{C}=\{x \in \mathbb{U} \mid x \notin A\}$.

The Empty Set

- An empty set is a set with no elements, denoted \emptyset.
- \emptyset is a subset of every set.
- There is only one empty set.
- Example: $\{1,3\} \cap\{2,4\}$ and $\left\{x \in \mathbb{R} \mid x^{2}=-1\right\}$.

Partitions of Sets

$\left\{A_{1}, A_{2}, \ldots\right\}$ is a partition of A if, only if,
(1) $A=A_{1} \cup A_{2} \cup \ldots$,
(2) A_{1}, A_{2}, \ldots are mutually disjoint.

- Example: Let $A=\{0,1,2,3,4,5,6,7\}, A_{1}=\{1,3,5\}$, $A_{2}=\{2,4,6\}$ and $\{0,7\}$. Is $\left\{A_{1}, A_{2}, A_{3}\right\}$ a partition of A ?

Power Sets

- The power set of a set A, denoted $\mathcal{P}(A)$, is the set of all subsets of A. Also commonly written as

$$
2^{A}
$$

- Example: $A=\{1,2,3\}$.

Cartesian Products

- Given two sets A and B, the Cartesian product (also called cross product)) of A and B, denoted $A \times B$ (read " A cross B "), is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

where (a, b) is called ordered pair.

Cartesian Products (cont'd)

- Given sets, $A_{1}, A_{2}, \ldots, A_{n}$, the Cartesian product of $A_{1}, A_{2}, \ldots, A_{n}$ denoted $A_{1} \times A_{2} \times \ldots \times A_{n}$ is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots$ Symbolically,

$$
A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots\right\}
$$

- Example: $A_{1}=A_{2}=A 3=\{1,2,3\}$, find
- $A_{1} \times A_{2} \times A_{3}$

Sets and Logic

- Recall the set builder notation

$$
A=\{x \mid P(x)\} \text { where } P \text { is some predicate. }
$$

- $P(x)$ is also called the characteristic function of the set.
- This means that

$$
x \in A \quad \Leftrightarrow \quad P(x) \text { holds true. }
$$

- Given a finite set, its characteristic function can be found by assigning an unique encoding to each element.
- Therefore, analyzing set relations can be done by logic analysis.
- Example: Let $A=\{x \mid P(x)\}$ and $B=\{x \mid Q(x)\}$. To check $A \subseteq B$, we can check if

$$
\forall x, P(x) \rightarrow Q(x) .
$$

Sets and Logic

- Correspondence between set and logical operations

$$
\begin{array}{rlc}
A \cap B & \Leftrightarrow & P_{A} \wedge P_{B} \\
A \cup B & \Leftrightarrow & P_{A} \vee P_{B} \\
A-B & \Leftrightarrow & P_{A} \wedge \neg P_{B} \\
A \subseteq B & \Leftrightarrow & P_{A} \rightarrow P_{B}
\end{array}
$$

where P_{A} and P_{B} are predicates defining sets A and B.

Relations

Definition

Let A and B be sets. A (binary) relation R from A to B is a subset of $A \times B$. Give an ordered pair (x, y) in $A \times B, x$ is related to y by R, written $x R y$, if, and only if, $(x, y) \in R$. A is the domain and B is the co-domain of R.

- Let $A=\{1,2,4\}$ and $B=\{1,2,3\}$ and define relation S from A to B as follows:

$$
\forall(x, y) \in A \times B,(x, y) \in S \Leftrightarrow x<y
$$

Properties of Relations

- Let R be a binary relation on a set A.
- R is reflexive if and only if, for all $x \in A$,

$$
x R x
$$

- R is symmetric if and only if, for all $x, y \in A$,

$$
x R y \Rightarrow y R x
$$

- R is anti-symmetric, if and only if, for all $x, y \in A$,

$$
x R y \wedge y R x \Rightarrow x=y
$$

- R is transitive, if and only if, for all $x, y, z \in A$,

$$
x R y \wedge y R z \Rightarrow x R z
$$

Relations on Infinite Sets

- A relation R is defined as

$$
\forall(x, y) \in \mathbb{R} \times \mathbb{R}, x R y \Leftrightarrow x=y
$$

Is R reflexive, symmetric, anti-symmetric, transitive?

Relations on Infinite Sets

- A relation S is defined as

$$
\forall(x, y) \in \mathbb{R} \times \mathbb{R}, x S y \Leftrightarrow x \leq y
$$

Is S reflexive, symmetric, anti-symmetric, transitive?

Formal Languages

Words over an Alphabet

- An alphabet Σ is a set of symbols.
- A word over Σ is a finite or infinite sequence of symbols from Σ

$$
w=A_{0} A_{1} \ldots A_{n} \text { or } w=A_{0} A_{1} \ldots \text { or } w=\epsilon .
$$

- Σ^{*} : all finite words over Σ.
- $\Sigma^{+}=\Sigma^{*}-\{\epsilon\}$.
- Σ^{ω} : all infinite words over Σ.
- A language over Σ is the set of finite or infinite words over Σ.
- A prefix of $w=A_{0} A_{1} \ldots A_{n}$ is $w=A_{0} \ldots A_{i}(i \leq n)$.
- Similarly defined for infinite words.
- A suffix of $w=A_{0} A_{1} \ldots A_{n}$ is $w=A_{i} \ldots A_{n}(i \geq 0)$.
- No suffix is defined for infinite words.

Operations on Words and Languages

- Concatenation
- $B A \cdot A A B=B A A A B$.
- Repetition of a word: $(A B)^{2}=A B A B$.
- Special cases: $w^{0}=\epsilon, w^{1}=w$.
- Finite repetition of finite words using Kleene star *.
- w^{*} is a language including words that are finite number of repetitions of w.
- Ex: $(A B)^{*}=\{\epsilon, A B, A B A B, A B A B A B, \ldots\}$.
- Concatenation and repetition are defined similarly for languages.

Regular Languages

- A regular expression over Σ is defined recursively by
- \emptyset and ϵ are regular expressions.
- A is a regular expression for every $A \in \Sigma$.
- If E_{1}, E_{2}, and E are regular expressions, so are $E_{1}+E_{2}, E_{1} \cdot E_{2}$ and E^{*}
- A language is regular if every word of the language is represented by a regular expression.
- The language induced by a regular expression E is $\mathcal{L}(E)$, and
- $\mathcal{L}(\emptyset)=\emptyset, \mathcal{L}(\epsilon)=\{\epsilon\}, \mathcal{L}(A)=\{A\}$, and
- $\mathcal{L}\left(E_{1}+E_{2}\right)=\mathcal{L}\left(E_{1}\right) \cup \mathcal{L}\left(E_{2}\right), \mathcal{L}\left(E_{1} \cdot E_{2}\right)=\mathcal{L}\left(E_{1}\right) \cdot \mathcal{L}\left(E_{2}\right)$, $\mathcal{L}\left(E_{1}+E_{2}\right)=\mathcal{L}\left(E^{*}\right) \cup(\mathcal{L}(E))^{*}$.
- A regular language can also be represented by a automata.

