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Propositional Logic
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Propositions

• A logic statement or proposition evaluates to true or false.

• Example: which of the following is a proposition?
• Two plus two equals four
• 2 + 3 = 4
• Tampa is south to Boston.
• He is a college student
• x+ y > 0
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Propositions

• Compound propositions can be constructed from simple ones
with three symbols (logic connectives):
• ¬: not; ∧: and; ∨: or.

• Given two propositions p and q,
• ¬p: the negation of p.
• p ∧ q: the conjunction of p and q.
• p ∨ q: the disjunction of p and q.

• Order of operations: in an expression with ¬, ∧ and ∨, ¬ applies
first.
• Use () to avoid ambiguity in p ∧ q ∨ r.
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Logical Equivalence

Two propositions are called logically equivalent if, and only if,
they have identical truth values for each possible truth assignment
for their proposition variables. The logical equivalence of
statements P and Q is denoted by writing P ≡ Q.

• Ex.: p ∧ q ≡ q ∧ p.
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De Morgan’s Law

• The negation of an and proposition is logically equivalent to the or
proposition in which each component is negated.

¬(p ∧ q) ≡ ¬p ∨ ¬q

• The negation of an or proposition is logically equivalent to the and
proposition in which each component is negated.

¬(p ∨ q) ≡ ¬p ∧ ¬q
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Tautologies and Contradictions

• A proposition is a tautology (valid) if it is always true regardless
of the truth values of the individual propositions substituted for its
proposition variables. A tautology is denoted by t.

p ∨ ¬p ≡ t

• A proposition is a contradiction if it is always false regardless of
the truth values of the individual propositions substituted for its
proposition variables. A contradiction is denoted by c

p ∧ ¬p ≡ c

• A proposition is satisfiable if there is at least one combination of
values to the propositional variables that makes the formula be
true. Ex.: (a ∨ b) ∧ c

• Equivalences: p ∧ t ≡ p, and p ∧ c ≡ c.
• What about p ∨ t ≡?, and p ∨ c ≡?
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Conditional Propositions

• In a conditional proposition, a conclusion is derived from some
hypotheses.

If 4686 is divisible by 6︸ ︷︷ ︸
hypothesis

, then it is divisible by 3︸ ︷︷ ︸
conclusion

.

• If p and q are propositions, the conditional of q by p is “If p then
q” or “p implies q” and is denoted p→ q.

p q p→ q
F F T
F T T
T F F
T T T

• p: hypothesis or antecedent
• q: conclusion or consequent
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Vacuously True Conditional propositions

• Representing conditional propositions using OR

p→ q ≡ ¬p ∨ q

.

• p→ q is vacuously true if p is false.

• Example:
if 0 = 1, then 1 = 2.

• Order of operations: ¬ applies first, ∧, ∨ and ⊕ next, → applies
the last.
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Predicate Logic
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Predicates

A predicate is a sentence that contains a finite number of
variables and becomes a proposition when specific values
are substituted for the variables.

The domain of a predicate variable is the set of all values
that may be substituted in place of the variable.

Example:

• Let P (x) be x2 > x where x is some real number where P is a
predicate symbol.

• P (x) becomes a proposition when a specific value is assigned to x.
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Universal Quantifiers and Statements

• A predicate becomes a statements when all predicate variables are
assigned with specific values.
• Alternatively, use quantifiers.

• Universal quantifier ∀: “for all”, “for each”, “for any”, “given
any”, etc

• Consider
∀ integer x ∈ Z, x > 0.

Think of x as an individual but generic object: an arbitrarily chosen
integer.
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Universal Quantifiers and Statements

• Let Q(x) be a predicate and D the domain of x.

• A universal statement is a statement of the form
“∀x ∈ D,Q(x), It is defined to be true if, and only if, Q(x) is true
for every x in D. It is defined to be false if, and only if, Q(x) is
false for at lease one x in D.

∀x ∈ D,Q(x) ≡ Q(v1) ∧Q(v2) ∧ . . .

• A counter-example to a universal proposition is a value x ∈ D
such that Q(x) is false.
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Existential Quantifiers and Statements

Existential quantifier ∃: “there exists”, “there is a”, “for some”, “
there is at least one”, etc.

• Let Q(x) be a predicate and D the domain of x.

• An existential statement is a statement of the form
“∃x ∈ D such that Q(x)”. It is defined to be true if, and only
if, Q(x) is true for at lease one x in D. It is defined to be false
if, and only if, Q(x) is false for all x in D.

∃x ∈ D,Q(x) ≡ Q(v1) ∨Q(v2) ∨ . . .

• A witness of an existential proposition is a value x ∈ D such
that Q(x) is true.
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Important Equivalences

∀x.f(x) ◦ g(y) ≡ (∀x.f(x)) ◦ g(y)
∃x.f(x) ◦ g(y) ≡ (∃x.f(x)) ◦ g(y)

∀x.f(x) ∧ ∀x, g(x) ≡ ∀x.(f(x) ∧ g(x))
∃x.f(x) ∨ ∃x(x), g(x) ≡ ∃x.(f(x) ∨ g(x))
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Set Theory
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Set Builder Notations

• A set is a collection of things called elements or members.

• Let S denote a set and let P (x) be a property of the elements of
S. We may define a new set to be the set of all elements x in S
such that P (x) is true. We denote this set as follows:

{x ∈ S | P (x)}

It reads as “the set of elements x such that P (x) is true.

• Example:
Z1 = {x ∈ Z | x ≥ 5}
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Subsets

• Subsets Given two sets A and B, A is called a subset of B,
written A ⊆ B, if, and only if, every element of A is also an
element of B.

A ⊆ B ⇔ ∀x, if x ∈ A, then x ∈ B.

The negation

A 6⊆ B ⇔ ∃x st x ∈ A ∧ x 6∈ B.

• Proper subsets Given two sets A and B, A is a proper subset of
B, written A ⊂ B, if and only if, every element of A is in B but
there is at least one element of B that is not in A. Symbolically,

A ⊂ B ⇔ A ⊆ B ∧B 6⊆ A
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Sets Equality

Given sets A and B, A equals B, written A = B, if and only if, every
element of A is in B and every element of B is in A. Or symbolically,

A = B ⇔ A ⊆ B and B ⊆ A

• Two sets are equal if they contain exactly the same elements.
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Set Operations

• Universal set (U): the set of all elements being considered in the
context.

• Intersection: A ∩B = {x ∈ U | x ∈ A and x ∈ B}.
• Union: A ∪B = {x ∈ U | x ∈ A or x ∈ B}.
• Difference: A−B = {x ∈ U | x ∈ A and x /∈ B}.
• Complement: AC = {x ∈ U | x /∈ A}.
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The Empty Set

• An empty set is a set with no elements, denoted ∅.
• ∅ is a subset of every set.
• There is only one empty set.

• Example: {1, 3} ∩ {2, 4} and {x ∈ R | x2 = −1}.
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Partitions of Sets

{A1, A2, . . .} is a partition of A if, only if,

1 A = A1 ∪ A2 ∪ . . .,
2 A1, A2, . . . are mutually disjoint.

• Example: Let A = {0, 1, 2, 3, 4, 5, 6, 7}, A1 = {1, 3, 5},
A2 = {2, 4, 6} and {0, 7}. Is {A1, A2, A3} a partition of A?

Hao Zheng ( Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 )Background Review 22 / 37



Power Sets

• The power set of a set A, denoted P(A), is the set of all subsets
of A. Also commonly written as

2A

• Example: A = {1, 2, 3}.
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Cartesian Products

• Given two sets A and B, the Cartesian product (also called
cross product)) of A and B, denoted A×B (read “A cross B”),
is the set of all ordered pairs (a, b), where a ∈ A and b ∈ B.

A×B = {(a, b) | a ∈ A and b ∈ B}

where (a, b) is called ordered pair.
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Cartesian Products (cont’d)

• Given sets, A1, A2, . . . , An, the Cartesian product of
A1, A2, . . . , An denoted A1 × A2 × . . .× An is the set of ordered
n-tuples (a1, a2, . . . , an) where a1 ∈ A1, a2 ∈ A2, . . ..
Symbolically,

A1 × A2 × . . .× An = {(a1, a2, . . . , an) | a1 ∈ A1, a2 ∈ A2, . . .}

• Example: A1 = A2 = A3 = {1, 2, 3}, find
• A1 ×A2 ×A3
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Sets and Logic

• Recall the set builder notation

A = {x | P (x)} where P is some predicate.

• P (x) is also called the characteristic function of the set.

• This means that

x ∈ A ⇔ P (x) holds true.

• Given a finite set, its characteristic function can be found by
assigning an unique encoding to each element.

• Therefore, analyzing set relations can be done by logic analysis.
• Example: Let A = {x | P (x)} and B = {x | Q(x)}. To check
A ⊆ B, we can check if

∀x, P (x)→ Q(x).
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Sets and Logic

• Correspondence between set and logical operations

A ∩B ⇔ PA ∧ PB

A ∪B ⇔ PA ∨ PB

A−B ⇔ PA ∧ ¬PB

A ⊆ B ⇔ PA → PB

where PA and PB are predicates defining sets A and B.
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Relations
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Definition

Let A and B be sets. A (binary) relation R from A to B is a subset
of A×B. Give an ordered pair (x, y) in A×B, x is related to y by
R, written xRy, if, and only if, (x, y) ∈ R. A is the domain and B is
the co-domain of R.

• Let A = {1, 2, 4} and B = {1, 2, 3} and define relation S from A
to B as follows:

∀(x, y) ∈ A×B, (x, y) ∈ S ⇔ x < y
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Properties of Relations

• Let R be a binary relation on a set A.

• R is reflexive if and only if, for all x ∈ A,

xRx

• R is symmetric if and only if, for all x, y ∈ A,

xRy ⇒ yRx.

• R is anti-symmetric, if and only if, for all x, y ∈ A,

xRy ∧ yRx ⇒ x = y.

• R is transitive, if and only if, for all x, y, z ∈ A,

xRy ∧ yRz ⇒ xRz.
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Relations on Infinite Sets

• A relation R is defined as

∀(x, y) ∈ R× R, xRy ⇔ x = y

Is R reflexive, symmetric, anti-symmetric, transitive?
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Relations on Infinite Sets

• A relation S is defined as

∀(x, y) ∈ R× R, xSy ⇔ x ≤ y

Is S reflexive, symmetric, anti-symmetric, transitive?
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Formal Languages
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Words over an Alphabet

• An alphabet Σ is a set of symbols.

• A word over Σ is a finite or infinite sequence of symbols from Σ

w = A0A1 . . . An or w = A0A1 . . . or w = ε.

• Σ∗: all finite words over Σ.
• Σ+ = Σ∗ − {ε}.

• Σω: all infinite words over Σ.

• A language over Σ is the set of finite or infinite words over Σ.

• A prefix of w = A0A1 . . . An is w = A0 . . . Ai (i ≤ n).
• Similarly defined for infinite words.

• A suffix of w = A0A1 . . . An is w = Ai . . . An (i ≥ 0).
• No suffix is defined for infinite words.
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Operations on Words and Languages

• Concatenation
• BA ·AAB = BAAAB.

• Repetition of a word: (AB)2 = ABAB.
• Special cases: w0 = ε, w1 = w.

• Finite repetition of finite words using Kleene star ∗.
• w∗ is a language including words that are finite number of repetitions

of w.
• Ex: (AB)∗ = {ε, AB,ABAB,ABABAB, . . .}.

• Concatenation and repetition are defined similarly for languages.
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Regular Languages

• A regular expression over Σ is defined recursively by
• ∅ and ε are regular expressions.
• A is a regular expression for every A ∈ Σ.
• If E1, E2, and E are regular expressions, so are E1 +E2, E1 ·E2 and
E∗

• A language is regular if every word of the language is represented
by a regular expression.
• The language induced by a regular expression E is L(E), and
• L(∅) = ∅, L(ε) = {ε}, L(A) = {A}, and
• L(E1 + E2) = L(E1) ∪ L(E2), L(E1 · E2) = L(E1) · L(E2),
L(E1 + E2) = L(E∗) ∪ (L(E))∗.

• A regular language can also be represented by a automata.
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