
Linear-Time Properties

Hao Zheng

Department of Computer Science and Engineering
University of South Florida

Tampa, FL 33620
Email: zheng@cse.usf.edu
Phone: (813)974-4757
Fax: (813)974-5456

Hao Zheng (CSE, USF) Comp Sys Verification 1 / 53

Recall Model CheckingRecall Model Checking

system model

error

system

violated +

Model Checking

requirements

Formalizing Modeling

location

property
specification

satisfied
counterexample

Simulation

We now consider the properties.

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 2 / 80

We now consider the properties.

Hao Zheng (CSE, USF) Comp Sys Verification 2 / 53

Overview

1 Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)
Executions, Paths, and Traces (Section 3.2.1 -3.2.2)
Linear-time Properties (Section 3.2.3 - 3.2.4)

3 Safety and Invariants (Section 3.3.1 - 3.3.2)

4 Liveness Properties (Section 3.4.1)

5 Fairness (Section 3.5.1)

Hao Zheng (CSE, USF) Comp Sys Verification 3 / 53

Contents

1 Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)
Executions, Paths, and Traces (Section 3.2.1 -3.2.2)
Linear-time Properties (Section 3.2.3 - 3.2.4)

3 Safety and Invariants (Section 3.3.1 - 3.3.2)

4 Liveness Properties (Section 3.4.1)

5 Fairness (Section 3.5.1)

Hao Zheng (CSE, USF) Comp Sys Verification 4 / 53

Deadlock

• Sequential programs without infinite loops terminate.

• For reactive systems, terminal states are undesirable and represent an
error.
• Embedded controllers need to operate without interruption for a long time.

• A deadlock occurs if a system stops while at least one component is in
a (local) nonterminal state.
• System has halted when at least one component should continue.

• Typically occurs when components mutually wait for each other.

Hao Zheng (CSE, USF) Comp Sys Verification 5 / 53

Example Deadlock Situation

90 Linear-Time Properties

red

green

red

green

α β

βα

TrLight1

TrLight2

TrLight1 ||TrLight2

⟨red , red⟩

Figure 3.1: An example of a deadlock situation.

Example 3.1. Deadlock for Fault Designed Traffic Lights

Consider the parallel composition of two transition systems

TrLight1 ∥ TrLight2

modeling the traffic lights of two intersecting roads. Both traffic lights synchronize by
means of the actions α and β that indicate the change of light (see Figure 3.1). The
apparently trivial error to let both traffic lights start with a red light results in a deadlock.
While the first traffic light is waiting to be synchronized on action α, the second traffic
light is blocked, since it is waiting to be synchronized with action β.

Example 3.2. Dining Philosophers

This example, originated by Dijkstra, is one of the most prominent examples in the field
of concurrent systems.

Hao Zheng (CSE, USF) Comp Sys Verification 6 / 53

The Dining Philosophers
Deadlock 91

P0

P1 P2

P3

P4

Stick0

Stick1

Stick2

Stick3Stick4

Five philosophers are sitting at a round table with a bowl of rice in the middle. For the
philosophers (being a little unworldly) life consists of thinking and eating (and waiting,
as we will see). To take some rice out of the bowl, a philosopher needs two chopsticks.
In between two neighboring philosophers, however, there is only a single chopstick. Thus,
at any time only one of two neighboring philosophers can eat. Of course, the use of the
chopsticks is exclusive and eating with hands is forbidden.

Note that a deadlock scenario occurs when all philosophers possess a single chopstick.
The problem is to design a protocol for the philosophers, such that the complete system is
deadlock-free, i.e., at least one philosopher can eat and think infinitely often. Additionally,
a fair solution may be required with each philosopher being able to think and eat infinitely
often. The latter characteristic is called freedom of individual starvation.

The following obvious design cannot ensure deadlock freedom. Assume the philosophers
and the chopsticks are numbered from 0 to 4. Furthermore, assume all following calcula-
tions be “modulo 5”, e.g., chopstick i−1 for i=0 denotes chopstick 4, and so on.

Philosopher i has stick i on his left and stick i−1 on his right side. The action request i,i

express that stick i is picked up by philosopher i. Accordingly, request i−1,i denotes the
action by means of which philosopher i picks up the (i−1)th stick. The actions release i,i

and release i−1,i have a corresponding meaning.

The behavior of philosopher i (called process Phil i) is specified by the transition system
depicted in the left part of Figure 3.2. Solid arrows depict the synchronizations with the
i-th stick, dashed arrows refer to communications with the i−1th stick. The sticks are
modeled as independent processes (called Stick i) with which the philosophers synchronize
via actions request and release; see the right part of Figure 3.2 that represents the process
of stick i. A stick process prevents philosopher i from picking up the ith stick when
philosopher i+1 is using it.

• Design a protocol which is deadlock-free.
• Design a protocol which is free of starvation.

Hao Zheng (CSE, USF) Comp Sys Verification 7 / 53

A Transition System for the Dining Philosophers92 Linear-Time Properties

wait for
left stick

left stick right stick

wait for
right stick

return the return the

think

eat

requesti i

releasei i

requesti 1 i

requesti 1 irequesti i

releasei 1 i

releasei 1 ireleasei i

available

occupied occupied

reqi i reqi i 1

reli i reli i 1

Figure 3.2: Transition systems for the ith philosopher and the ith stick.

The complete system is of the form:

Phil4 ∥Stick 3 ∥Phil3 ∥Stick2 ∥Phil2 ∥Stick1 ∥Phil 1 ∥Stick0 ∥Phil0 ∥Stick4

This (initially obvious) design leads to a deadlock situation, e.g., if all philosophers pick
up their left stick at the same time. A corresponding execution leads from the initial state

⟨think4, avail3, think3, avail 2, think 2, avail 1, think 1, avail 0, think 0, avail 4⟩

by means of the action sequence request4, request3, request2, request1, request0 (or any
other permutation of these 5 request actions) to the terminal state

⟨wait4,0, occ4,4,wait3,4, occ3,3,wait2,3, occ2,2,wait1,2, occ1,1,wait0,1, occ0,0⟩.

This terminal state represents a deadlock with each philosopher waiting for the needed
stick to be released.

A possible solution to this problem is to make the sticks available for only one philosopher
at a time. The corresponding chopstick process is depicted in the right part of Figure 3.3.
In state available i,j only philosopher j is allowed to pick up the ith stick. The above-
mentioned deadlock situation can be avoided by the fact that some sticks (e.g., the first,
the third, and the fifth stick) start in state available i,i, while the remaining sticks start in
state available i,i+1. It can be verified that this solution is deadlock- and starvation-free.

Phil4 ‖ Stick3 ‖ Phil3 ‖ Stick2 ‖ Phil2 ‖ Stick1 ‖ Phil1 ‖ Stick0 ‖ Phil0 ‖ Stick4

Hao Zheng (CSE, USF) Comp Sys Verification 8 / 53

A Transition System for the Dining Philosophers92 Linear-Time Properties

wait for
left stick

left stick right stick

wait for
right stick

return the return the

think

eat

requesti i

releasei i

requesti 1 i

requesti 1 irequesti i

releasei 1 i

releasei 1 ireleasei i

available

occupied occupied

reqi i reqi i 1

reli i reli i 1

Figure 3.2: Transition systems for the ith philosopher and the ith stick.

The complete system is of the form:

Phil4 ∥Stick 3 ∥Phil3 ∥Stick2 ∥Phil2 ∥Stick1 ∥Phil 1 ∥Stick0 ∥Phil0 ∥Stick4

This (initially obvious) design leads to a deadlock situation, e.g., if all philosophers pick
up their left stick at the same time. A corresponding execution leads from the initial state

⟨think4, avail3, think3, avail 2, think 2, avail 1, think 1, avail 0, think 0, avail 4⟩

by means of the action sequence request4, request3, request2, request1, request0 (or any
other permutation of these 5 request actions) to the terminal state

⟨wait4,0, occ4,4,wait3,4, occ3,3,wait2,3, occ2,2,wait1,2, occ1,1,wait0,1, occ0,0⟩.

This terminal state represents a deadlock with each philosopher waiting for the needed
stick to be released.

A possible solution to this problem is to make the sticks available for only one philosopher
at a time. The corresponding chopstick process is depicted in the right part of Figure 3.3.
In state available i,j only philosopher j is allowed to pick up the ith stick. The above-
mentioned deadlock situation can be avoided by the fact that some sticks (e.g., the first,
the third, and the fifth stick) start in state available i,i, while the remaining sticks start in
state available i,i+1. It can be verified that this solution is deadlock- and starvation-free.

Phil4 ‖ Stick3 ‖ Phil3 ‖ Stick2 ‖ Phil2 ‖ Stick1 ‖ Phil1 ‖ Stick0 ‖ Phil0 ‖ Stick4
req4 ,4 , req3 ,3 , req2 ,2 , req1 ,1 , req0 ,0 leads to a deadlock.

Hao Zheng (CSE, USF) Comp Sys Verification 8 / 53

Improved Transition System for the Stick
Deadlock 93

wait for
left stick

left stick right stick

wait for
right stick

return the return the

think

eat

reqi i

reli i

reqi 1 i

reqi 1 ireqi i

reli 1 i

reli 1 ireli i

availablei

occupied occupied

reqi i

reqi i 1

reli i 1

availablei 1

reli i

Figure 3.3: Improved variant of the ith philosopher and the ith stick.

A further characteristic often required for concurrent systems is robustness against failure
of their components. In the case of the dining philosophers, robustness can be formulated
in a way that ensures deadlock and starvation freedom even if one of the philosophers is
“defective” (i.e., does not leave the think phase anymore).1 The above-sketched deadlock-
and starvation-free solution can be modified to a fault-tolerant solution by changing the
transition systems of philosophers and sticks such that philosopher i+1 can pick up the ith
stick even if philosopher i is thinking (i.e., does not need stick i) independent of whether
stick i is in state available i,i or available i,i+1. The corresponding is also true when the roles
of philosopher i and i+1 are reversed. This can be established by adding a single Boolean
variable xi to philosopher i (see Figure 3.4). The variable xi informs the neighboring
philosophers about the current location of philosopher i. In the indicated sketch, xi is a
Boolean variable which is true if and only if the ith philosopher is thinking. Stick i is
made available to philosopher i if stick i is in location available i (as before), or if stick i
is in location available i+1 while philosopher i+1 is thinking.

Note that the above description is at the level of program graphs. The complete system is
a channel system with request and release actions standing for handshaking over a channel
of capacity 0.

1Formally, we add a loop to the transition system of a defective philosopher at state think i.

• Even and odd numbered sticks start in different available states.

Hao Zheng (CSE, USF) Comp Sys Verification 9 / 53

Contents

1 Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)
Executions, Paths, and Traces (Section 3.2.1 -3.2.2)
Linear-time Properties (Section 3.2.3 - 3.2.4)

3 Safety and Invariants (Section 3.3.1 - 3.3.2)

4 Liveness Properties (Section 3.4.1)

5 Fairness (Section 3.5.1)

Hao Zheng (CSE, USF) Comp Sys Verification 10 / 53

Recall Executions

• A finite execution fragment % of TS is an alternating sequence of states
and actions ending with a state:

% = s0 α1 s1 α2 . . . αn sn such that si
αi+1−−−→ si+1 for all 0 ≤ i < n.

• An infinite execution fragment ρ of TS is an infinite, alternating
sequence of states and actions:

ρ = s0 α1 s1 α2 s2 α3 . . . such that si
αi+1−−−→ si+1 for all 0 ≤ i.

• An execution of TS is an initial, maximal execution fragment
• An execution fragment is initial if s0 ∈ I.
• A maximal execution fragment can be finite, ending in a terminal state, or

infinite.

Hao Zheng (CSE, USF) Comp Sys Verification 11 / 53

Traces

• Let transition system TS = (S,Act,→, I,AP, L) without terminal
states (i.e., all executions are infinite).
• Terminal states are assumed to have self-loop transitions.

• The trace of execution ρ = s0 α0 s1 α1 . . . is

trace(π) = L(s0)L(s1)

• The trace of s0 α0 s1 α1 . . . sn is

trace(π̂) = L(s0)L(s1) . . . L(sn).

• Traces of a TS are infinite words over the alphabet 2AP, i.e.,

Traces(TS) ⊆
(
2AP

)ω
.

Hao Zheng (CSE, USF) Comp Sys Verification 12 / 53

Semaphore-Based Mutual Exclusion
Semaphore-Based Mutual Exclusion

wait1

crit1

noncrit1

y := y+1

y := y−1
y > 0 :

wait2

crit2

noncrit2

y := y+1

y := y−1
y > 0 :

PG1 : PG2 :

y=0 means “lock is currently possessed”; y=1 means “lock is free”

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 13 / 80

y=0 means “lock is currently possessed”; y=1 means “lock is free”

Hao Zheng (CSE, USF) Comp Sys Verification 13 / 53

TS(PG1 |||PG2) TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80Hao Zheng (CSE, USF) Comp Sys Verification 14 / 53

Example Traces TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

Let AP = { crit1, crit2 }
The trace of the finite execution:

π̂ = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈w1, w2, y = 1〉 →
〈w1, c2, y = 0〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉

is: trace(π̂) = ∅ ∅ ∅ { crit2 } ∅ { crit1 }
Hao Zheng (CSE, USF) Comp Sys Verification 15 / 53

Example Traces TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

Let AP = { crit1, crit2 }
The trace of the infinite execution:

π = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉 →
〈n1, n2, y = 1〉 → 〈n1, w2, y = 1〉 → 〈n1, c2, y = 0〉 → . . .

is: trace(π) = ∅ ∅ { crit1 } ∅ ∅ { crit2 } ∅ ∅ { crit1 } ∅ ∅ { crit2 } . . .
Hao Zheng (CSE, USF) Comp Sys Verification 15 / 53

Linear-Time Properties

• Linear-time properties specify the traces that a TS should only exhibit.

A linear-time property (LT property) P over AP is a subset of
(
2AP

)ω
• Finite words are not needed assuming there are no terminal states.

• A trace satisfies LT property P if it is included in P .

TS (over AP) satisfies LT property P (over AP):
TS |= P if and only if Traces(TS) ⊆ P

• TS satisfies the LT property P if all its traces are admissible.

• Later, a logic will be introduced for specifying LT properties.

Hao Zheng (CSE, USF) Comp Sys Verification 16 / 53

How to Specify Mutual Exclusion?

Always at most one process is in its critical section.

• Let AP = { crit1, crit2 }
• Other atomic propositions are not relevant for this property.

• Formalization as LT property:

Pmutex = set of infinite words A0A1A2 . . . with { crit1, crit2 } 6⊆ Ai for all
0 ≤ i

• Which of the following infinite words satisfies Pmutex ?
• ({ crit1 } { crit2 })ω

4

• { crit1 } { crit1 } { crit1 } . . .

4

• ∅ ∅ ∅ . . .

4

• { crit1 } ∅ { crit1, crit2 } . . .

8

• ∅ { crit1 }∅ ∅ { crit1, crit2 }∅ . . .

8

Hao Zheng (CSE, USF) Comp Sys Verification 17 / 53

How to Specify Mutual Exclusion?

Always at most one process is in its critical section.

• Let AP = { crit1, crit2 }
• Other atomic propositions are not relevant for this property.

• Formalization as LT property:

Pmutex = set of infinite words A0A1A2 . . . with { crit1, crit2 } 6⊆ Ai for all
0 ≤ i

• Which of the following infinite words satisfies Pmutex ?
• ({ crit1 } { crit2 })ω 4
• { crit1 } { crit1 } { crit1 } . . . 4
• ∅ ∅ ∅ . . . 4
• { crit1 } ∅ { crit1, crit2 } . . . 8
• ∅ { crit1 }∅ ∅ { crit1, crit2 }∅ . . . 8

Hao Zheng (CSE, USF) Comp Sys Verification 17 / 53

Does the Semaphore-Based Algorithm Satisfy
Pmutex?

TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

.

Hao Zheng (CSE, USF) Comp Sys Verification 18 / 53

Does the Semaphore-Based Algorithm Satisfy
Pmutex?

TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

Yes as there is no reachable state labeled with { crit1, crit2 }.

Hao Zheng (CSE, USF) Comp Sys Verification 18 / 53

How to Specify Starvation Freedom?

A process that wants to enter the critical section is eventually able to do so.

• Let AP = {wait1, crit1,wait2, crit2 }
• Formalization #1:

Pfinwait = set of infinite words A0A1A2 . . . such that:

∀j. (waiti ∈ Aj ⇒ ∃k ≥ j. criti ∈ Ak) for each i ∈ { 1, 2 }

• However, it does not specify that a process should wait often.
• This property holds if process i never wants to enter the critical section!

Hao Zheng (CSE, USF) Comp Sys Verification 19 / 53

Does the Semaphore-Based Algorithm Satisfy
Pnostarve?

TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

No. ∅ ({wait2 } {wait1,wait2 } { crit1,wait2 })
ω ∈ Traces(TS), but 6∈ Pnostarve .

Hao Zheng (CSE, USF) Comp Sys Verification 20 / 53

Does the Semaphore-Based Algorithm Satisfy
Pnostarve?

TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

No. ∅ ({wait2 } {wait1,wait2 } { crit1,wait2 })
ω ∈ Traces(TS), but 6∈ Pnostarve .

Hao Zheng (CSE, USF) Comp Sys Verification 20 / 53

3.2.4 Trace Inclusion and LT Properties

Theorem 3.15

Let TS and TS′ be transition systems (over AP) without terminal
states:

Traces(TS) ⊆ Traces(TS′)

if and only if

for any LT property P : TS′ |= P implies TS |= P

• Traces(TS) ⊆ Traces(TS′) means that TS is an implementation of TS′

• TS is also referred to as refinement of TS′.

Hao Zheng (CSE, USF) Comp Sys Verification 21 / 53

Mutual Exclusion Algorithm Revisited TS ′TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80
Hao Zheng (CSE, USF) Comp Sys Verification 22 / 53

Mutual Exclusion Algorithm Revisited TS
TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

This algorithm satisfies Pmutex as
Traces(TS) ⊂ Traces(TS′) and TS′ |= Pmutex .

Hao Zheng (CSE, USF) Comp Sys Verification 22 / 53

Corollary 3.18 Trace Equivalence and LT Properties

Let TS and TS′ be transition systems (over AP) without terminal
states:

Traces(TS) = Traces(TS′)

if and only if

TS and TS′ satisfy the same LT properties

• TS and TS′ cannot be distinguished by any LT properties.

Hao Zheng (CSE, USF) Comp Sys Verification 23 / 53

Two Beverage Vending MachinesTwo Beverage Vending Machines

pay

selectsoda beerτ
τ

pay

select1 select2soda beer

τ
τ

AP = {pay ,soda,beer }
There is no LT-property that can distinguish between these machines.

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 28 / 80

τ

τ

τ
τ

AP = { pay , soda, beer }
There is no LT-property that can distinguish between these machines.

Hao Zheng (CSE, USF) Comp Sys Verification 24 / 53

Contents

1 Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)
Executions, Paths, and Traces (Section 3.2.1 -3.2.2)
Linear-time Properties (Section 3.2.3 - 3.2.4)

3 Safety and Invariants (Section 3.3.1 - 3.3.2)

4 Liveness Properties (Section 3.4.1)

5 Fairness (Section 3.5.1)

Hao Zheng (CSE, USF) Comp Sys Verification 25 / 53

3.3 Safety and Invariants

• Safety properties ≈ “nothing bad should happen”. [Lamport 1977]

• Typical safety property: mutual exclusion property.
• The bad thing (having > 1 process in the critical section) never occurs.

• Another typical safety property is deadlock freedom.

⇒ These properties are in fact invariants.

• An invariant is an LT property that is given by a condition Φ for the
states and requires that Φ holds for all reachable states (e.g., for mutex
property Φ ≡ ¬crit1 ∨ ¬crit2).

Read section 3.3.1. Skim over 3.3.2. Ignore 3.3.3.

Hao Zheng (CSE, USF) Comp Sys Verification 26 / 53

3.3.1 Invariants

Definition 3.20 Invariant

An LT property Pinv over AP is an invariant if there is a propositional
logic formula Φ over AP such that:

Pinv =
{

A0A1A2 . . . ∈
(
2AP

)ω | ∀j ≥ 0. Aj |= Φ
}

where Φ is called an invariant condition of Pinv .

Hao Zheng (CSE, USF) Comp Sys Verification 27 / 53

Example Invariants

• Mutual exclusion
Φ = ¬crit1 ∨ ¬crit2

• Deadlock freedom in Dining Philosophers

Φ = ¬wait0 ∨ . . . ∨ ¬wait4

Deadlock is avoided if at least one philosopher is not waiting to pick up sticks.

Hao Zheng (CSE, USF) Comp Sys Verification 28 / 53

Notes on Invariants

TS |= Pinv iff trace(π) ∈ Pinv for all paths π in TS
iff L(s) |= Φ for all states s that belong to a path of TS
iff L(s) |= Φ for all states s ∈ Reach(TS)

• Φ has to be fulfilled by all initial states and satisfaction of Φ is invariant
under all transitions in the reachable fragment of TS.

Hao Zheng (CSE, USF) Comp Sys Verification 29 / 53

Checking an Invariant

• Checking an invariant for the propositional formula Φ

= Check the validity of Φ in every reachable state.
⇒ Use a slight modification of standard graph traversal algorithms (i.e.,

depth-first search (DFS) and breadth-first search (BFS)).
• Provided that the given transition system TS is finite.

• Perform a forward depth-first search:
• If any state s is found with s 6|= Φ ⇒ the invariance of Φ is violated.

• Alternative is to perform a backward search:
• Starts with all states where Φ does not hold.
• Calculates (by a DFS or BFS) the set

⋃
s∈S,s 6|=Φ Pre∗(s).

• If there is a init ∈ I such that init ∈ ⋃s∈S,s 6|=Φ Pre∗(s), then Φ is violated.

Hao Zheng (CSE, USF) Comp Sys Verification 30 / 53

Algorithm 3: A Naive Invariant Checking Algorithm

R = ∅; // Set of reachable states
U = ∅; // Stack of states
bool b := true; // All states in R satisfies Φ
foreach s ∈ I do

if s 6∈ R then
visit(s); // visit(s) shown on the next slide

return b;

Hao Zheng (CSE, USF) Comp Sys Verification 31 / 53

The visit(s) Procedure

push(s, U); // Set of reachable states
R := R ∪ {s}; // Stack of states
bool b := true; // All states in R satisfies Φ
while U 6= ∅ do

s′ = top(U);
if Post(s′) ⊆ R then

pop(U);
b := b ∧ (s′ |= Φ);

else
Let s′′ ∈ Post(s′)\R;
push(s′′, U);
R := R ∪ {s′′};

return b;

Error indication is state that refutes Φ.

s0 s1 . . . sn with si |= Φ (i 6= n) and sn 6|= Φ is a counter-example.

Hao Zheng (CSE, USF) Comp Sys Verification 32 / 53

DFS Illustration
TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

0

1 2

3

4

5

6 7

Hao Zheng (CSE, USF) Comp Sys Verification 33 / 53

Time Complexity

• The time complexity for invariant checking is:

O(N ∗ (1 + |Φ|) +M)

where
• N is the number of reachable states,
• M is the number of transitions in the reachable fragment of TS, and
• |Φ| is the length of Φ.

Hao Zheng (CSE, USF) Comp Sys Verification 34 / 53

3.3.2 Safety Properties

• Safety properties can be translated to invariants.
• Safety properties need to hold in every state!

• A TS violates a LT safety property Psafe if there is a BadPref such that

BadPref • (2AP)ω 6∈ Psafe .

where BadPref is a finite trace that ends with a violation to Psafe .

• The idea is different from what is given in the book.

Psafe : red preceded immediately by yellow.

Counter-example for Psafe : •••
Hao Zheng (CSE, USF) Comp Sys Verification 35 / 53

Contents

1 Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)
Executions, Paths, and Traces (Section 3.2.1 -3.2.2)
Linear-time Properties (Section 3.2.3 - 3.2.4)

3 Safety and Invariants (Section 3.3.1 - 3.3.2)

4 Liveness Properties (Section 3.4.1)

5 Fairness (Section 3.5.1)

Hao Zheng (CSE, USF) Comp Sys Verification 36 / 53

Liveness Properties

• Safety properties specify that “something bad never happens”.

• Doing nothing easily fulfills a safety property as this will never lead to a
“bad” situation.

• Safety properties are complemented by liveness properties that require
some progress.
• Safety violations are characterized by finite traces.

• Liveness properties assert that ”something good will happen”.
• Liveness violations are characterized by infinite traces.

Hao Zheng (CSE, USF) Comp Sys Verification 37 / 53

Example Liveness Properties

• “If the tank is empty, the outlet valve will eventually be closed”.

• “If the outlet valve is open and the request signal disappears, the outlet
valve will eventually be closed”.

• “If the tank is full and a request is present, the outlet valve will
eventually be opened”.

• “The program terminates within 31 computational steps”.

⇒ A finite trace may violate this; this is a safety property!

• “The program eventually terminates”.

Hao Zheng (CSE, USF) Comp Sys Verification 38 / 53

Liveness Properties for Mutual Exclusion

• Eventually:
• Each process will eventually enter its critical section.

• Repeated eventually:
• Each process will enter its critical section infinitely often.

• Starvation freedom:
• Each waiting process will eventually enter its critical section.

How to formalize these properties?

Hao Zheng (CSE, USF) Comp Sys Verification 39 / 53

Liveness Properties for Mutual Exclusion

P = {A0 A1 A2 . . . | Aj ⊆ AP & . . . } and AP = {wait1, crit1,wait2, crit2}
• Eventually:

Each process will eventually enter its critical section.

(∃j ≥ 0. crit1 ∈ Aj) ∧ (∃j ≥ 0. crit2 ∈ Aj)

• Repeated eventually:
Each process will enter its critical section infinitely often.(∞
∃ j ≥ 0. crit1 ∈ Aj

)
∧
(∞
∃ j ≥ 0. crit2 ∈ Aj

)
• Starvation freedom:

Each waiting process will eventually enter its critical section.

∀j ≥ 0. (wait1 ∈ Aj ⇒ (∃k > j. crit1 ∈ Ak)) ∧
∀j ≥ 0. (wait2 ∈ Aj ⇒ (∃k > j. crit2 ∈ Ak))

Hao Zheng (CSE, USF) Comp Sys Verification 40 / 53

Summary LT Properties

• LT properties are finite sets of infinite words over 2AP (= traces).

• An invariant requires a condition Φ to hold in any reachable state.

• Each trace refuting a safety property has a finite prefix causing this.
• Invariants are safety properties with bad prefix Φ∗(¬Φ).
• A safety property is regular iff its set of bad prefixes is a regular language.
⇒ Safety properties constrain finite behaviors.

• A liveness property does not rule out finite behavior, liveness properties
constrain infinite behaviors.

Hao Zheng (CSE, USF) Comp Sys Verification 41 / 53

Contents

1 Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)
Executions, Paths, and Traces (Section 3.2.1 -3.2.2)
Linear-time Properties (Section 3.2.3 - 3.2.4)

3 Safety and Invariants (Section 3.3.1 - 3.3.2)

4 Liveness Properties (Section 3.4.1)

5 Fairness (Section 3.5.1)

Hao Zheng (CSE, USF) Comp Sys Verification 42 / 53

Does this Program Always Terminate?

Inc |||Reset

where

proc Inc = while x ≥ 0 do x := x+ 1 od

proc Reset = x := −1

x is a shared integer variable that initially has value 0

Hao Zheng (CSE, USF) Comp Sys Verification 43 / 53

Is it Possible to Starve?TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

Can either process enter its critical section if it wants to?

Hao Zheng (CSE, USF) Comp Sys Verification 44 / 53

Fairness

• Starvation freedom is often considered under process fairness.

⇒ There is a fair scheduling of the execution of processes.

• Fairness is typically needed to prove liveness.
• Not needed for safety properties!
• To prove liveness or some form of progress, progress needs to be possible.

• Fairness is concerned with a fair resolution of nondeterminism such that
it is not biased to consistently ignore a possible option.

• Problem: liveness properties constrain infinite behaviors, but some
traces—that are unfair—refute the liveness property.

Hao Zheng (CSE, USF) Comp Sys Verification 45 / 53

3.5.1 Fairness Constraints

• Unconditional fairness

An activity is executed infinitely often.

• Strong fairness (compassion)

If an activity is infinitely often enabled (not necessarily always!)
then it has to be executed infinitely often.

• Weak fairness (justice)

If an activity is continuously enabled (no temporary disabling!)
then it has to be executed infinitely often.

We will use actions to distinguish fair and unfair behaviors.
A state-based notion of fairness could also be defined.

Hao Zheng (CSE, USF) Comp Sys Verification 46 / 53

Fairness Definition

For TS = (S,Act,→, I,AP, L) without terminal states, A ⊆ Act,

and infinite execution fragment ρ = s0
α0−→ s1

α1−→ . . . of TS:

1 ρ is unconditionally A-fair whenever:

true =⇒ ∀k ≥ 0.∃j ≥ k. αj ∈ A︸ ︷︷ ︸
infinitely often A is taken

2 ρ is strongly A-fair whenever:

(∀k ≥ 0.∃j ≥ k. Act(sj) ∩ A 6= ∅)︸ ︷︷ ︸
infinitely often A is enabled

=⇒ ∀k ≥ 0.∃j ≥ k. αj ∈ A︸ ︷︷ ︸
infinitely often A is taken

3 ρ is weakly A-fair whenever:

(∃k ≥ 0.∀j ≥ k. Act(sj) ∩ A 6= ∅)︸ ︷︷ ︸
A is eventually always enabled

=⇒ ∀k ≥ 0.∃j ≥ k. αj ∈ A︸ ︷︷ ︸
infinitely often A is taken

where Act(s) =
{
α ∈ Act | ∃s′ ∈ S. s α−→ s′

}
Hao Zheng (CSE, USF) Comp Sys Verification 47 / 53

Fairness Example

This program terminates under unconditional (process) fairness on process
IDs:

proc Inc = while x ≥ 0 do x := x+ 1 od

proc Reset = x := −1

x is a shared integer variable that initially has value 0

Hao Zheng (CSE, USF) Comp Sys Verification 48 / 53

Another Fairness Example

Does the following property holds?

x eventually becomes negative.

proc Inc = while x ≥ 0 do α1 : x := x+ 1 od

proc Reset = while x < 0 do α2 : x := −1 od

x is a shared integer variable that initially has value 0

1 Using unconditional fairness on α1 and α2.

2 Using strong fairness on α1 and α2.

Hao Zheng (CSE, USF) Comp Sys Verification 49 / 53

Which Fairness Notion to Use?

unconditional A-fairness =⇒ strong A-fairness =⇒ weak A-fairness

• Fairness constraints aim to rule out “unreasonable” executions.

• Too strong? ⇒ relevant computations ruled out, verification yields:
• “false”: error found.
• “true”: don’t know as some relevant execution may refute it.

• Too weak? ⇒ too many computations considered, verification yields:

• “true”: property holds.
• “false”: don’t know, as refutation may be due to some unreasonable run.

Hao Zheng (CSE, USF) Comp Sys Verification 50 / 53

Example (Un)fair ExecutionsTS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80Hao Zheng (CSE, USF) Comp Sys Verification 51 / 53

Fairness for Mutual Exclusion
TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

F = (
{

enter1, enter2
}︸ ︷︷ ︸

Funcondirional

, ∅, ∅)

Hao Zheng (CSE, USF) Comp Sys Verification 52 / 53

Fairness for Mutual Exclusion
TS(PG1 |||PG2)

⟨n1,n2,y=1⟩

⟨w1,n2,y=1⟩ ⟨n1,w2,y=1⟩

⟨c1,n2,y=0⟩ ⟨w1,w2,y=1⟩ ⟨n1,c2,y=0⟩

⟨c1,w2,y=0⟩ ⟨w1,c2,y=0⟩
y := y−1

y := y−1

y := y+1

y := y+1

Chris J. Myers (Lecture 3: Linear-Time Prop.) Verification of Cyber-Physical Systems 14 / 80

F = (∅,
{

enter1, enter2
}︸ ︷︷ ︸

Fstrong

, ∅)

Hao Zheng (CSE, USF) Comp Sys Verification 52 / 53

	Deadlock (Section 3.1)
	Linear Time Behavior (Section 3.2)
	Executions, Paths, and Traces (Section 3.2.1 -3.2.2)
	Linear-time Properties (Section 3.2.3 - 3.2.4)

	Safety and Invariants (Section 3.3.1 - 3.3.2)
	Liveness Properties (Section 3.4.1)
	Fairness (Section 3.5.1)

