Linear-Time Properties

Hao Zheng

Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456

Recall Model Checking

We now consider the properties.

Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)

- Executions, Paths, and Traces (Section 3.2.1 -3.2.2)
- Linear-time Properties (Section 3.2.3 3.2.4)

3 Safety and Invariants (Section 3.3.1 - 3.3.2)

- 4 Liveness Properties (Section 3.4.1)
- 5 Fairness (Section 3.5.1)

Contents

Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)

- Executions, Paths, and Traces (Section 3.2.1 -3.2.2)
- Linear-time Properties (Section 3.2.3 3.2.4)
- **3** Safety and Invariants (Section 3.3.1 3.3.2)
- 4 Liveness Properties (Section 3.4.1)
- **5** Fairness (Section 3.5.1)

- Sequential programs without infinite loops terminate.
- For reactive systems, terminal states are undesirable and represent an error.
 - Embedded controllers need to operate without interruption for a long time.
- A *deadlock* occurs if a system stops while at least one component is in a (local) nonterminal state.
 - System has halted when at least one component should continue.
- Typically occurs when components mutually wait for each other.

Example Deadlock Situation

The Dining Philosophers

- Design a protocol which is deadlock-free.
- Design a protocol which is free of starvation.

A Transition System for the Dining Philosophers

Figure 3.2: Transition systems for the *i*th philosopher and the *i*th stick.

 $\mathsf{Phil}_4 \parallel \mathsf{Stick}_3 \parallel \mathsf{Phil}_3 \parallel \mathsf{Stick}_2 \parallel \mathsf{Phil}_2 \parallel \mathsf{Stick}_1 \parallel \mathsf{Phil}_1 \parallel \mathsf{Stick}_0 \parallel \mathsf{Phil}_0 \parallel \mathsf{Stick}_4$

A Transition System for the Dining Philosophers

Figure 3.2: Transition systems for the *i*th philosopher and the *i*th stick.

 $\begin{array}{l} \mathsf{Phil}_4 \parallel \mathsf{Stick}_3 \parallel \mathsf{Phil}_3 \parallel \mathsf{Stick}_2 \parallel \mathsf{Phil}_2 \parallel \mathsf{Stick}_1 \parallel \mathsf{Phil}_1 \parallel \mathsf{Stick}_0 \parallel \mathsf{Phil}_0 \parallel \mathsf{Stick}_4 \\ req_{4,4}, req_{3,3}, req_{2,2}, req_{1,1}, req_{0,0} \text{ leads to a deadlock.} \end{array}$

Improved Transition System for the Stick

Figure 3.3: Improved variant of the *i*th philosopher and the *i*th stick.

• Even and odd numbered sticks start in different available states.

Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)

- Executions, Paths, and Traces (Section 3.2.1 3.2.2)
- Linear-time Properties (Section 3.2.3 3.2.4)

3 Safety and Invariants (Section 3.3.1 - 3.3.2)

4 Liveness Properties (Section 3.4.1)

5 Fairness (Section 3.5.1)

• A *finite execution fragment* ρ of *TS* is an alternating sequence of states and actions ending with a state:

 $\varrho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$ such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \le i < n$.

• An *infinite execution fragment ρ* of *TS* is an infinite, alternating sequence of states and actions:

 $\rho = s_0 \alpha_1 s_1 \alpha_2 s_2 \alpha_3 \dots$ such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $0 \leq i$.

- An execution of TS is an initial, maximal execution fragment
 - An execution fragment is *initial* if $s_0 \in I$.
 - A maximal execution fragment can be finite, ending in a terminal state, or infinite.

Traces

- Let transition system *TS* = (*S*, *Act*, →, *I*, *AP*, *L*) without terminal states (i.e., all executions are infinite).
 - Terminal states are assumed to have self-loop transitions.
- The *trace* of execution $\rho = s_0 \alpha_0 s_1 \alpha_1 \dots$ is

$$trace(\pi) = L(s_0) L(s_1) \dots$$

• The trace of
$$s_0 \alpha_0 s_1 \alpha_1 \dots s_n$$
 is

$$trace(\widehat{\pi}) = L(s_0) L(s_1) \dots L(s_n).$$

• Traces of a TS are infinite words over the alphabet 2^{AP} , i.e.,

$$Traces(TS) \subseteq (2^{AP})^{\omega}.$$

Semaphore-Based Mutual Exclusion

y=0 means "lock is currently possessed"; y=1 means "lock is free"

Let $AP = \{ crit_1, crit_2 \}$ The trace of the finite execution:

$$\widehat{\pi} = \langle n_1, n_2, y = 1 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle w_1, w_2, y = 1 \rangle \rightarrow \langle w_1, c_2, y = 0 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle c_1, n_2, y = 0 \rangle$$

is: $trace(\widehat{\pi}) = \emptyset \emptyset \emptyset \{ crit_2 \} \emptyset \{ crit_1 \}$

Let $AP = \{ crit_1, crit_2 \}$ The trace of the infinite execution:

$$\pi = \langle n_1, n_2, y = 1 \rangle \to \langle w_1, n_2, y = 1 \rangle \to \langle c_1, n_2, y = 0 \rangle \to$$
$$\langle n_1, n_2, y = 1 \rangle \to \langle n_1, w_2, y = 1 \rangle \to \langle n_1, c_2, y = 0 \rangle \to \dots$$

 $\mathsf{is:} \ \mathsf{trace}(\pi) \ = \ \emptyset \, \emptyset \, \{ \, \mathsf{crit}_1 \, \} \, \emptyset \, \emptyset \, \{ \, \mathsf{crit}_2 \, \} \, \emptyset \, \emptyset \, \{ \, \mathsf{crit}_1 \, \} \, \emptyset \, \emptyset \, \{ \, \mathsf{crit}_2 \, \} \dots$

• Linear-time properties specify the traces that a TS should only exhibit.

A *linear-time property* (LT property) P over AP is a subset of $(2^{AP})^{\omega}$

- Finite words are not needed assuming there are no terminal states.
- A trace satisfies LT property P if it is included in P.
- TS (over AP) satisfies LT property P (over AP): $TS \models P$ if and only if $Traces(TS) \subseteq P$
- TS satisfies the LT property P if all its traces are admissible.
- Later, a logic will be introduced for specifying LT properties.

Always at most one process is in its critical section.

- Let $AP = \{ crit_1, crit_2 \}$
 - Other atomic propositions are not relevant for this property.
- Formalization as LT property:

 $P_{mutex} = \text{set of infinite words } A_0 A_1 A_2 \dots$ with $\{ \operatorname{crit}_1, \operatorname{crit}_2 \} \not\subseteq A_i$ for all $0 \le i$

- Which of the following infinite words satisfies P_{mutex} ?
 - $(\{\operatorname{crit}_1\} \{\operatorname{crit}_2\})^{\omega}$
 - { *crit*₁ } { *crit*₁ } { *crit*₁ } ...
 - ØØØ...
 - $\{ \operatorname{crit}_1 \} \emptyset \{ \operatorname{crit}_1, \operatorname{crit}_2 \} \dots$
 - \emptyset { *crit*₁ } \emptyset \emptyset { *crit*₁, *crit*₂ } \emptyset ...

Always at most one process is in its critical section.

- Let $AP = \{ crit_1, crit_2 \}$
 - Other atomic propositions are not relevant for this property.
- Formalization as LT property:

 $P_{mutex} = \text{set of infinite words } A_0 A_1 A_2 \dots$ with $\{ \operatorname{crit}_1, \operatorname{crit}_2 \} \not\subseteq A_i$ for all $0 \le i$

- Which of the following infinite words satisfies P_{mutex} ?
 - $(\{\operatorname{\mathit{crit}}_1\} \{\operatorname{\mathit{crit}}_2\})^{\omega}$
 - { *crit*₁ } { *crit*₁ } { *crit*₁ } ...
 - ØØØ...
 - $\{ \operatorname{crit}_1 \} \emptyset \{ \operatorname{crit}_1, \operatorname{crit}_2 \} \dots$
 - \emptyset { *crit*₁ } \emptyset \emptyset { *crit*₁, *crit*₂ } \emptyset ...

X

¥

Does the Semaphore-Based Algorithm Satisfy P_{mutex} ?

٠

Does the Semaphore-Based Algorithm Satisfy P_{mutex} ?

Yes as there is no reachable state labeled with $\{ crit_1, crit_2 \}$.

A process that wants to enter the critical section is eventually able to do so.

- Let $AP = \{ wait_1, crit_1, wait_2, crit_2 \}$
- Formalization #1:

 $P_{finwait} =$ set of infinite words $A_0 A_1 A_2 \dots$ such that: $\forall j. (wait_i \in A_i \Rightarrow \exists k \ge j. \ crit_i \in A_k)$ for each $i \in \{1, 2\}$

- However, it does not specify that a process should wait often.
- This property holds if process *i* never wants to enter the critical section!

Does the Semaphore-Based Algorithm Satisfy *P*_{nostarve}**?**

Does the Semaphore-Based Algorithm Satisfy $P_{nostarve}$?

No. \emptyset ({ wait₂ } { wait₁, wait₂ } { crit₁, wait₂ })^{ω} \in Traces(TS), but $\notin P_{nostarve}$.

Theorem 3.15

Let TS and TS' be transition systems (over AP) without terminal states:

 $\begin{array}{rll} \textit{Traces}(\textit{TS}) & \subseteq & \textit{Traces}(\textit{TS}') \\ & & \text{if and only if} \end{array}$ for any LT property $P \text{: } \textit{TS}' \models P \text{ implies } \textit{TS} \models P \end{array}$

• $\mathit{Traces}(\mathit{TS}) \subseteq \mathit{Traces}(\mathit{TS'})$ means that TS is an implementation of $\mathit{TS'}$

• *TS* is also referred to as *refinement* of *TS*'.

Mutual Exclusion Algorithm Revisited TS'

Mutual Exclusion Algorithm Revisited TS

This algorithm satisfies P_{mutex} as $Traces(TS) \subset Traces(TS')$ and $TS' \models P_{mutex}$.

Corollary 3.18 Trace Equivalence and LT Properties

Let TS and TS' be transition systems (over AP) without terminal states:

$$Traces(TS) = Traces(TS')$$

if and only if

TS and TS' satisfy the same LT properties

• TS and TS' cannot be distinguished by any LT properties.

Two Beverage Vending Machines

 $AP = \{ pay, soda, beer \}$

There is no LT-property that can distinguish between these machines.

Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)

- Executions, Paths, and Traces (Section 3.2.1 3.2.2)
- Linear-time Properties (Section 3.2.3 3.2.4)

3 Safety and Invariants (Section 3.3.1 - 3.3.2)

4 Liveness Properties (Section 3.4.1)

5 Fairness (Section 3.5.1)

- Safety properties \approx "nothing bad should happen". [Lamport 1977]
- Typical safety property: mutual exclusion property.
 - The bad thing (having > 1 process in the critical section) never occurs.
- Another typical safety property is deadlock freedom.
- \Rightarrow These properties are in fact invariants.
 - An invariant is an LT property that is given by a condition Φ for the states and requires that Φ holds for all reachable states (e.g., for mutex property $\Phi \equiv \neg crit_1 \lor \neg crit_2$).

Read section 3.3.1. Skim over 3.3.2. Ignore 3.3.3.

Definition 3.20 Invariant

An LT property P_{inv} over AP is an *invariant* if there is a propositional logic formula Φ over AP such that:

$$P_{inv} = \left\{ A_0 A_1 A_2 \ldots \in \left(2^{AP}\right)^{\omega} \mid \forall j \ge 0. \ A_j \models \Phi \right\}$$

where Φ is called an *invariant condition* of P_{inv} .

• Mutual exclusion

$$\Phi = \neg crit_1 \lor \neg crit_2$$

• Deadlock freedom in Dining Philosophers

$$\Phi = \neg wait_0 \lor \ldots \lor \neg wait_4$$

Deadlock is avoided if at least one philosopher is not waiting to pick up sticks.

$\begin{array}{ll} \textit{TS} \models P_{inv} & \text{iff} & \textit{trace}(\pi) \in P_{inv} \text{ for all paths } \pi \text{ in } \textit{TS} \\ & \text{iff} & L(s) \models \Phi \text{ for all states } s \text{ that belong to a path of } \textit{TS} \\ & \text{iff} & L(s) \models \Phi \text{ for all states } s \in \textit{Reach}(\textit{TS}) \end{array}$

• Φ has to be fulfilled by all initial states and satisfaction of Φ is invariant under all transitions in the reachable fragment of *TS*.

- Checking an invariant for the propositional formula $\boldsymbol{\Phi}$
 - = Check the validity of Φ in every reachable state.
 - ⇒ Use a slight modification of standard graph traversal algorithms (i.e., depth-first search (DFS) and breadth-first search (BFS)).
 - Provided that the given transition system TS is finite.
- Perform a forward depth-first search:
 - If any state s is found with $s \not\models \Phi \Rightarrow$ the invariance of Φ is violated.
- Alternative is to perform a backward search:
 - Starts with all states where Φ does not hold.
 - Calculates (by a DFS or BFS) the set $\bigcup_{s \in S, s \not\models \Phi} \operatorname{Pre}^*(s)$.
 - If there is a $init \in I$ such that $init \in \bigcup_{s \in S, s \not\models \Phi} Pre^*(s)$, then Φ is violated.

Algorithm 3: A Naive Invariant Checking Algorithm

The visit(s) Procedure

push(s, U); $R := R \cup \{s\};$ **bool** b := true;while $U \neq \emptyset$ do s' = top(U);if $Post(s') \subset R$ then pop(U); $b := b \wedge (s' \models \Phi)$: else Let $s'' \in Post(s') \setminus R$; push(s'', U); $R := R \cup \{s''\};$

// Set of reachable states // Stack of states // All states in R satisfies Φ

return b;

Error indication is state that refutes Φ . $s_0 s_1 \dots s_n$ with $s_i \models \Phi$ ($i \neq n$) and $s_n \not\models \Phi$ is a counter-example.

DFS Illustration

• The time complexity for invariant checking is:

 $\mathcal{O}(N*(1+|\Phi|)+M)$

where

- N is the number of reachable states,
- M is the number of transitions in the reachable fragment of TS, and
- $|\Phi|$ is the length of Φ .

- Safety properties can be translated to invariants.
 - Safety properties need to hold in every state!
- A TS violates a LT safety property P_{safe} if there is a BadPref such that

$$BadPref \bullet (2^{AP})^{\omega} \notin P_{safe}.$$

where BadPref is a finite trace that ends with a violation to P_{safe} .

• The idea is different from what is given in the book.

 P_{safe} : red preceded immediately by yellow.

Counter-example for P_{safe} :

Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)

- Executions, Paths, and Traces (Section 3.2.1 3.2.2)
- Linear-time Properties (Section 3.2.3 3.2.4)

3 Safety and Invariants (Section 3.3.1 - 3.3.2)

4 Liveness Properties (Section 3.4.1)

5 Fairness (Section 3.5.1)

- Safety properties specify that "something bad never happens".
- Doing nothing easily fulfills a safety property as this will never lead to a "bad" situation.
- Safety properties are complemented by liveness properties that require some progress.
 - Safety violations are characterized by finite traces.
- Liveness properties assert that "something good will happen".
 - Liveness violations are characterized by infinite traces.

- "If the tank is empty, the outlet valve will eventually be closed".
- "If the outlet valve is open and the request signal disappears, the outlet valve will eventually be closed".
- "If the tank is full and a request is present, the outlet valve will eventually be opened".
- "The program terminates within 31 computational steps".
 - $\Rightarrow\,$ A finite trace may violate this; this is a safety property!
- "The program eventually terminates".

- Eventually:
 - Each process will eventually enter its critical section.
- Repeated eventually:
 - Each process will enter its critical section infinitely often.
- Starvation freedom:
 - Each waiting process will eventually enter its critical section.

How to formalize these properties?

Liveness Properties for Mutual Exclusion

- $P = \{ A_0 A_1 A_2 \dots | A_j \subseteq AP \& \dots \} \text{ and } AP = \{ wait_1, crit_1, wait_2, crit_2 \}$
- Eventually:

Each process will eventually enter its critical section.

$$(\exists j \geq 0. \ crit_1 \in A_j) \land (\exists j \geq 0. \ crit_2 \in A_j)$$

• Repeated eventually:

Each process will enter its critical section infinitely often.

$$\left(\stackrel{\simeq}{\exists} j \ge 0. \ \textit{crit}_1 \in \textit{A}_j \right) \ \land \ \left(\stackrel{\simeq}{\exists} j \ge 0. \ \textit{crit}_2 \in \textit{A}_j \right)$$

• Starvation freedom:

Each waiting process will eventually enter its critical section.

$$\forall j \ge 0. \ (\textit{wait}_1 \in \mathsf{A}_j \ \Rightarrow \ (\exists k > j. \ \textit{crit}_1 \in \mathsf{A}_k)) \land \\ \forall j \ge 0. \ (\textit{wait}_2 \in \mathsf{A}_j \ \Rightarrow \ (\exists k > j. \ \textit{crit}_2 \in \mathsf{A}_k))$$

- LT properties are finite sets of infinite words over 2^{AP} (= traces).
- An invariant requires a condition Φ to hold in any reachable state.
- Each trace refuting a safety property has a finite prefix causing this.
 - Invariants are safety properties with bad prefix $\Phi^*(\neg\Phi).$
 - A safety property is regular iff its set of bad prefixes is a regular language.
 - \Rightarrow Safety properties constrain finite behaviors.
- A liveness property does not rule out finite behavior, liveness properties constrain infinite behaviors.

Deadlock (Section 3.1)

2 Linear Time Behavior (Section 3.2)

- Executions, Paths, and Traces (Section 3.2.1 3.2.2)
- Linear-time Properties (Section 3.2.3 3.2.4)
- **3** Safety and Invariants (Section 3.3.1 3.3.2)

4 Liveness Properties (Section 3.4.1)

5 Fairness (Section 3.5.1)

Inc ||| Reset

$\label{eq:where} \begin{array}{rcl} where \\ {\rm proc\ Inc} &=& {\rm while\ } x \geq 0 \ {\rm do\ } x := x+1 \ {\rm od} \\ \\ {\rm proc\ Reset} &=& x := -1 \end{array}$

x is a shared integer variable that initially has value 0

Is it Possible to Starve?

Can either process enter its critical section if it wants to?

- Starvation freedom is often considered under process fairness.
 - $\Rightarrow\,$ There is a fair scheduling of the execution of processes.
- Fairness is typically needed to prove liveness.
 - Not needed for safety properties!
 - To prove liveness or some form of progress, progress needs to be possible.
- Fairness is concerned with a fair resolution of nondeterminism such that it is not biased to consistently ignore a possible option.
- Problem: liveness properties constrain infinite behaviors, but some traces—that are unfair—refute the liveness property.

• Unconditional fairness

An activity is executed infinitely often.

• Strong fairness (compassion)

If an activity is *infinitely often* enabled (not necessarily always!) then it has to be executed infinitely often.

• Weak fairness (justice)

If an activity is *continuously enabled* (no temporary disabling!) then it has to be executed infinitely often.

We will use actions to distinguish fair and unfair behaviors. A state-based notion of fairness could also be defined.

Fairness Definition

For $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states, $A \subseteq Act$, and infinite execution fragment $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$ of TS:

1 ρ is *unconditionally A*-*fair* whenever:

true
$$\implies \forall k \ge 0. \exists j \ge k. \alpha_j \in A$$

infinitely often A is taken

2 ρ is *strongly A*-*fair* whenever:

$$\underbrace{(\forall k \ge 0, \exists j \ge k, Act(s_j) \cap A \neq \emptyset)}_{\text{infinitely often } A \text{ is enabled}} \implies \underbrace{\forall k \ge 0, \exists j \ge k, \alpha_j \in A}_{\text{infinitely often } A \text{ is taken}}$$

3 ρ is *weakly A*-*fair* whenever:

$$\underbrace{(\exists k \ge 0, \forall j \ge k. \ Act(s_j) \cap A \neq \emptyset)}_{A \text{ is eventually always enabled}} \implies \underbrace{\forall k \ge 0, \exists j \ge k. \ \alpha_j \in A}_{\text{infinitely often } A \text{ is taken}}$$

where $Act(s) = \{ \alpha \in Act \mid \exists s' \in S. s \xrightarrow{\alpha} s' \}$

Hao Zheng (CSE, USF)

This program terminates under unconditional (process) fairness on process IDs:

 \boldsymbol{x} is a shared integer variable that initially has value 0

Does the following property holds?

x eventually becomes negative.

proc lnc = while $x \ge 0$ do $\alpha_1 : x := x + 1$ od

proc Reset = while x < 0 do $\alpha_2 : x := -1$ od

x is a shared integer variable that initially has value 0

1 Using unconditional fairness on α_1 and α_2 .

2 Using strong fairness on α_1 and α_2 .

unconditional A-fairness \implies strong A-fairness \implies weak A-fairness

- Fairness constraints aim to rule out "unreasonable" executions.
- Too strong? \Rightarrow relevant computations ruled out, verification yields:
 - "false": error found.
 - "true": don't know as some relevant execution may refute it.
- Too weak? \Rightarrow too many computations considered, verification yields:
 - "true": property holds.
 - "false": don't know, as refutation may be due to some unreasonable run.

Example (Un)fair Executions

Fairness for Mutual Exclusion

Fairness for Mutual Exclusion

