CDA 4253 FPGA System Design Introduction to Zynq

Hao Zheng Dept of Comp Sci & Eng U of South Florida

Key Features

- Processor Zynq-7000 AP SoC
- Memory
 - 512 MB DDR3
 - 256 Mb Quad-SPI Flash
 - 4GB SDcard
- Communication
 - Onboard USB-JTAG Programming
 - 10/100/1000 Ethernet
 - USB OTG 2.0 and USB-UART
- Expansion Ports Pmods

A General View of Embedded Systems

Source: ETHZ, Prof. Lothar Thiele

System-on-a-Board

System-on-a-Chip (SoC)

- Higher performance
- Lower power use
- Small form factor
- Reduced cost
- flexibility

How Are FPGAs used in the Past?

How Are FPGAs used in the Past?

Zynq – All Programmable SoC

Generic Embedded Architecture

Generic Embedded Architecture – Mapping to Zynq

Zynq 7000 SoC

Complete ARM®-based Processing System

- Dual ARM Cortex[™]-A9 MPCore[™], processor centric
- Integrated memory controllers & peripherals
- Fully autonomous to the Programmable Logic

Tightly Integrated Programmable Logic

- Used to extend Processing System
- Scalable density and performance
- Over 3000 internal interconnects

• Flexible Array of I/O

- Wide range of external multi-standard I/O
- High performance integrated serial transceivers
- Analog-to-Digital Converter inputs

Zynq-7000 SoC Block Diagram

PS and PL

- PS: Processing system, hard silicon core
 - Dual ARM Cortex-A9 processor based
 - Multiple peripherals
- PL: Programmable logic
 - Shares the same 7 series programmable logic as
 - Artix-based devices: Z-7010 and Z-7020 (high-range I/O banks only)
 - Kintex-based devices: Z-7030 and Z-7045 (mix of high-range and high-performance I/O banks)

PS Components

PS Components

- Application processing unit (APU)
- I/O peripherals
 - Multiplexed I/O (MIO),
 - extended multiplexed I/O (EMIO)
- Memory interfaces
- PS interconnect
- DMA
- Timers
- General interrupt controller (GIC)
- On-chip memory (OCM)
- Debug controller: ARM CoreSight

Block Diagram – APU

ARM Cortex–A9 Processor

- Dual-core processor cluster
- 2.5 DMIP/MHz per processor
- Harvard architecture
 - Self-contained 32KB L1 caches for instructions and data
- External memory based 512KB L2 cache
- Automatic cache coherency between processor cores
- Up to 1 GHz operation (fastest speed grade)

Architecture – NEON

Source: The Zynq Book

For image and video processing

PS Peripherals

- Multiplexed Input/Output (MIO)
 - Multiplexed output of peripheral and static memories
- Extended MIO
 - Extension with PL side IOs
 - Additional interface with PL cores

PS – PL Interface

- AXI high-performance slave ports (HP0-HP3)
 - Configurable 32-bit or 64-bit data width
 - Access to OCM and DDR only
 - Conversion to processing system clock domain
 - AXI FIFO Interface (AFI) are FIFOs (1KB) to smooth large data transfers

• AXI general-purpose ports (GP0-GP1)

- Two masters from PS to PL
- Two slaves from PL to PS
- 32-bit data width
- Conversation and sync to processing system clock domain

Zynq-7000 SoC Block Diagram

PS – PL Interface

Interface Name	Interface Description	Master	Slave
M_AXI_GP0	General Purpose (AXI_GP)	PS	PL
M_AXI_GP1		PS	PL
S_AXI_GP0	General Purpose (AXI_GP)	PL	PS
S_AXI_GP1		PL	PS
S_AXI_ACP	Accelerator Coherency Port (ACP), cache coherent transaction	PL	PS
S_AXI_HP0	High Performance Ports (AXI_HP) with read/write FIFOs. (Note that AXI_HP interfaces are sometimes referred to as AXI Fifo Interfaces, or AFIs).	PL	PS
S_AXI_HP1		PL	PS
S_AXI_HP2		PL	PS
S_AXI_HP3		PL	PS

PS – PL Interface

- DMA, interrupts, events signals
 - Processor event bus for signaling event information to the CPU
 - PL peripheral IP interrupts to the PS general interrupt controller (GIC)
- Extended multiplexed I/O (EMIO) allows PS peripheral ports access to PL logic and device I/O pins

Memory Map

- The Cortex-A9 processor uses 32-bit addressing
- All PS/PL peripherals are memory mapped to the A9 cores
- All PL slave peripherals are located between
 - 4000_0000 -- 7FFF_FFF(connected to GP0)
 - 8000_0000 -- BFFF_FFF(connected to GP1)

FFFC_0000 to FFFF_FFFF FD00_0000 to FFFB_FFFF FC00_0000 to FCFF_FFFF F8F0 3000 to FBFF FFFF F890 0000 to F8F0 2FFF F801_0000 to F88F_FFFF F800_1000 to F880_FFFF F800 0C00 to F800 0FFF F800_0000 to F800_0BFF E600 0000 to F7FF FFFF E100 0000 to E5FF FFFF E030_0000 to E0FF_FFFF E000 0000 to E02F FFFF C000_0000 to DFFF_FFFF 8000 0000 to BFFF FFFF 4000_0000 to 7FFF_FFF 0010 0000 to 3FFF FFFF 0004 0000 to 000F FFFF 0000_0000 to 0003_FFFF

	OCM
	Reserved
	Quad SPI linear address
:	Reserved
	CPU Private registers
	Reserved
	PS System registers,
:	Reserved
:	SLCR Registers
	Reserved
:	SMC Memory
-	Reserved
:	IO Peripherals
:	Reserved
	PL (MAXI_GP1)
	PL (MAXI_GPO)
:	DDR(address not filtered by SCU)
:	DDR(address filtered by SCU)
	ОСМ

AXI Interface

AXI: <u>Advanced Microcontroller Bus Architectu</u> AXI: <u>A</u>dvanced E<u>x</u>tensible <u>I</u>nterface

Basic AXI Protocol

AXI4—Lite Protocol

> No burst

- > Data width 32 or 64 only
 - Xilinx IP only supports 32-bits
- > Very small footprint
- Bridging to AXI4 handled automatically by AXI_Interconnect (if needed)

AXI4 Protocol

- Sometimes called "Full AXI" or Memory Mapped"
 - Not ARM-sanctioned names
- > Single address multiple data
 - Burst up to 256 data beats
- > Data Width parameterizable
 - 1024 bits

No address channel, no read and write, always just master to slave

AXI4—Stream Protocol

- Effectively an AXI4 "write data" channel

> Unlimited burst length

- AXI4 max 256
- AXI4-Lite does not burst

Virtually same signaling as AXI Data Channels

- Protocol allows merging, packing, width conversion
- Supports sparse, continuous, aligned, unaligned streams

AXI4-Stream Transfer

Hardware Development

Hardware Development

Software Development

- BSP includes low-level SW routing interfacing with HW
- Refreshed by SDK when HW base is changed

References

- Zedboard Hardware User Guide
- The Zynq Book
 - Chapter 1, 2, 3
- The Zyng 7000 SoC Technical Reference Manual