
CDA 4253/CIS 6930 FPGA System Design
VHDL Testbench Development

Hao Zheng
Comp. Sci & Eng

University of South Florida

2

Introduction
• Verification is perhaps the most difficult

aspect of any design
– That’s not an excuse for omitting it or

leaving to others…
– Multiple levels: single component,

module with multiple sub-components,
and system-level

• Multiple abstraction levels
• In synchronous design, we verify the

functionality at cycle-level accuracy
– Not detailed timing, which will be

checked with static timing analysis
(STA) tools

13.11.2015 Arto Perttula 3

[http://blogs.mentor.com/verificationhorizons/blog/2011/04/03/part-4-
the-2010-wilson-research-group-functional-verification-
study/slide13-2-2/} > 70% projects spent > 40% time in verification

3

Validation, Verification, and Testing
➺ Validation: Does the product meet customers’ wishes?

➺Am I building the right product?
➺ Verification: Does the product meet the specification?

➺ Am I building the product right?
➺ Debugging begins when error is detected

➺ Testing: Is chip fabricated as meant to?
➺No short-circuits, open connects, slow transistors etc.
➺Post-manufacturing tests at the silicon fab
➺Accept/Reject

➺Often these are used interchangeably
➺E.g., both terms are used: DUT (design under test) and DUV

(design under verification)

4

Basic Testbench Architecture

VHDL Testbench Tutorial

2 Testbench architecture

There are multiple ways of developing a testbench, but the one we will develop throughout this tutorial
is shown in Figure 1. It consists of three 3 parts:

1. The component we want to test, i.e. the Design Under Test (DUT).

2. A mechanism for supplying inputs to the DUT.

3. A mechanism for checking the outputs of the DUT against expected outputs.

Design

Under

Test

(DUT)

Supply

inputs
Check

outputs

TESTBENCH

Figure 1: Testbench architecture

3 Victims / test subjects

We will be testing two RTL designs of a generic N-bit adder:

1. Combinatorial ripple-carry adder (Figure 2a.)

2. Sequential adder (Figure 2b.)

Each design is based upon the implementation of a 1-bit combinatorial full-adder. We assume the 1-bit
full-adder is correct, so we will not be explicitly testing it.

(a) Combinatorial adder (b) Sequential adder

Figure 2: Adders

2 of 29 Version 1.2 of 10th March 2017, EPFL ©2017

5

Testbench Defined

➺Testbench = VHDL entity that applies stimuli (drives the
inputs) to the Design Under Test (DUT) and (optionally)
verifies expected outputs.

➺The results can be viewed in a waveform window or
written to a file.

➺Since Testbench is written in VHDL, it is not restricted to
a single simulation tool (portability).

➺The same Testbench can be easily adapted to test
different implementations (i.e. different architectures) of
the same design.

6

Testbench

design entity

Architecture 1 Architecture 2 Architecture N. . . .

The same testbench can be used to
test multiple implementations of the same circuit

(multiple architectures)

DUT

7

DUT

Reference Model

Test
Generator

expected results

Testbench

actual results
= ?

Possible sources of expected results
used for comparison

8

Testbench Anatomy
ENTITY my_entity_tb IS

--TB entity has no ports
END my_entity_tb;

ARCHITECTURE behavioral OF tb IS
--Local signals and constants

BEGIN
DUT:entity work.TestComp PORT MAP(-- Instantiations of DUTs

);

test_vector: PROCESS
-- Input stimuli

END PROCESS;

monitor: process
-- monitor and check the outputs from DUT
end process;

END behavioral;

9

Process without Sensitivity List
and its use in Testbenches

10

• A process can be given a unique name

using an optional LABEL

• This is followed by the keyword

PROCESS

• The keyword BEGIN is used to indicate

the start of the process

• All statements within the process are

executed SEQUENTIALLY. Hence,

order of statements is important.

Testing: PROCESS
BEGIN

test_vector<=�00�;
WAIT FOR 10 ns;
test_vector<=�01�;
WAIT FOR 10 ns;
test_vector<=�10�;
WAIT FOR 10 ns;
test_vector<=�11�;
WAIT FOR 10 ns;

END PROCESS;

What is a PROCESS?
➺A process is a sequence of instructions referred to as

sequential statements.

A process cannot have a sensitivity list and use wait statements

11

Execution of statements in a PROCESS

• The execution of statements

continues sequentially till the

last statement in the process.

• After execution of the last

statement, the control is again

passed to the beginning of the

process.

Testing: PROCESS

BEGIN

test_vector<=�00�;

WAIT FOR 10 ns;

test_vector<=�01�;

WAIT FOR 10 ns;

test_vector<=�10�;

WAIT FOR 10 ns;

test_vector<=�11�;

WAIT FOR 10 ns;

END PROCESS;

O
r
d
e
r
 o

f
e
x
e
c
u
ti
o
n

Program control is passed to the

first statement after BEGIN

12

PROCESS with a WAIT Statement

• The last statement in the
PROCESS is a WAIT instead of
WAIT FOR 10 ns.

• This will cause the PROCESS
to suspend indefinitely when
the WAIT statement is
executed.

• This form of WAIT can be used
in a process included in a
testbench when all possible
combinations of inputs have
been tested or a non-periodical
signal has to be generated.

Testing: PROCESS
BEGIN

test_vector<=�00�;
WAIT FOR 10 ns;
test_vector<=�01�;
WAIT FOR 10 ns;
test_vector<=�10�;
WAIT FOR 10 ns;
test_vector<=�11�;
WAIT;

END PROCESS;

Program execution stops here

O
rd

er
 o

f e
xe

cu
tio

n

13

WAIT FOR vs. WAIT

WAIT FOR 10ns : waveform will keep
repeating itself forever

WAIT : waveform will keep its state after the
last wait instruction.

0 1 2 3

…

0 1 2 3 …

“WAIT;” executed here

14

Specifying time in VHDL

15

Time Values – Examples

7 ns
1 min
min

10.65 us
10.65 fs

Space
(required)

Numeric value

unit of time
most commonly
used in simulation

16

Units of time

Unit Definition
Base Unit
fs femtoseconds (10-15 seconds)
Derived Units
ps picoseconds (10-12 seconds)
ns nanoseconds (10-9 seconds)
us microseconds (10-6 seconds)
ms miliseconds (10-3 seconds)
sec seconds
min minutes (60 seconds)
hr hours (3600 seconds)

17

Simple Testbenches

18

Generating Clock Signal

CONSTANT clk1_period : TIME := 20 ns;

CONSTANT clk2_period : TIME := 200 ns;

SIGNAL clk1 : STD_LOGIC;

SIGNAL clk2 : STD_LOGIC := ‘0’;

begin

clk1_generator: PROCESS

begin

clk1 <= ‘0’;

WAIT FOR clk1_period/2;

clk1 <= ‘1’;

WAIT FOR clk1_period/2;

END PROCESS;

clk2 <= not clk2 after clk2_period/2;

.......

END behavioral;

19

Generate One-Time Signals – Reset

Architecture behavioral

CONSTANT reset1_width : TIME := 100 ns;

CONSTANT reset2_width : TIME := 150 ns;
SIGNAL reset1 : STD_LOGIC;

SIGNAL reset2 : STD_LOGIC := ‘1’;

BEGIN

reset1_generator: process

begin

reset1 <= ‘1’;

WAIT FOR reset1_width;

reset1 <= ‘0’;

WAIT;

end process;

END behavioral;

reset2_generator: process

begin
WAIT FOR reset2_width;

reset2 <= ‘0’;

WAIT;

end process;

20

Set of pairs: {Input Values i, Expected Outputs Values i}

Input Values 1, Expected Output Values 1
Input Values 2, Expected Output Values 2
……………………………
Input Values N, Expected Output Values N

Test vectors can cover either:
- all combinations of inputs (for very simple circuits only)
- selected representative combinations of inputs
(most realistic circuits)

Test Vectors

21

Generating selected values of one input
signal test_vector : std_logic_vector(2 downto 0);

BEGIN

.......

testing: PROCESS

BEGIN

test_vector <= "000";

WAIT FOR 10 ns;

test_vector <= "001";

WAIT FOR 10 ns;

test_vector <= "010";

WAIT FOR 10 ns;

test_vector <= "011";

WAIT FOR 10 ns;

test_vector <= "100";

WAIT FOR 10 ns;

END PROCESS;

........

END behavioral;

22

Generating all values of one input
USE ieee.std_logic_unsigned.all;
.......
SIGNAL test_vector : STD_LOGIC_VECTOR(2 downto 0):="000";

BEGIN
.......

testing: PROCESS
BEGIN
WAIT FOR 10 ns;
test_vector <= test_vector + 1;

end process TESTING;

........
END behavioral;

23

USE ieee.std_logic_unsigned.all;

...

SIGNAL test_ab : STD_LOGIC_VECTOR(2 downto 0);

SIGNAL test_sel : STD_LOGIC_VECTOR(1 downto 0);

BEGIN

.......
double_loop: PROCESS
BEGIN

test_ab <="00";
test_sel <="00";
for I in 0 to 3 loop

for J in 0 to 3 loop
wait for 10 ns;
test_ab <= test_ab + 1;

end loop;
test_sel <= test_sel + 1;

end loop;
END PROCESS;

........

END behavioral;

Generating all possible values of two inputs

24

Checking Outputs

test_generator: PROCESS

begin

-- apply a test vector to inputs
wait until rising_edge(clk1);

END PROCESS;

Monitor: PROCESS

begin

wait until rising_edge(clk1);

-- check the design output

END PROCESS;

25

Example: Arbiter
test_generator: PROCESS

variable req : unsigned(1 to 3) := 0;

begin

r <= std_logic_vector(req);

req := req + ”001”;
wait until rising_edge(clk1);

END PROCESS;

Monitor: PROCESS

begin

wait until rising_edge(clk1);

-- check that at most one g is ‘1’

END PROCESS;

26

More Advanced Testbenches

27

More Advanced Testbenches

Input
Stimulus

Generator

Design Under
Test (DUT)

Monitor

Design
Correct/Incorrect

Reference
Model

The reference model can be
• A C program
• in VHDL

28

Test Generation – Records
TYPE test_vector IS RECORD

operation : STD_LOGIC_VECTOR(1 DOWNTO 0);
a : STD_LOGIC;
b : STD_LOGIC;
y : STD_LOGIC;

END RECORD;

CONSTANT num_vectors : INTEGER := 16;

TYPE test_vectors IS ARRAY (0 TO num_vectors-1) OF test_vector;

CONSTANT and_op : STD_LOGIC_VECTOR(1 DOWNTO 0) := "00";
CONSTANT or_op : STD_LOGIC_VECTOR(1 DOWNTO 0) := "01";
CONSTANT xor_op : STD_LOGIC_VECTOR(1 DOWNTO 0) := "10";
CONSTANT xnor_op : STD_LOGIC_VECTOR(1 DOWNTO 0) := "11";

29

Test Generation – Records
CONSTANT test_vector_table: test_vectors :=(

(operation => AND_OP, a=>'0', b=>'0', y=>'0'),
(operation => AND_OP, a=>'0', b=>'1', y=>'0'),
(operation => AND_OP, a=>'1', b=>'0', y=>'0'),
(operation => AND_OP, a=>'1', b=>'1', y=>'1'),
(operation => OR_OP, a=>'0', b=>'0', y=>'0'),
(operation => OR_OP, a=>'0', b=>'1', y=>'1'),
(operation => OR_OP, a=>'1', b=>'0', y=>'1'),
(operation => OR_OP, a=>'1', b=>'1', y=>'1'),
(operation => XOR_OP, a=>'0', b=>'0', y=>'0'),
(operation => XOR_OP, a=>'0', b=>'1', y=>'1'),
(operation => XOR_OP, a=>'1', b=>'0', y=>'1'),
(operation => XOR_OP, a=>'1', b=>'1', y=>'0'),
(operation => XNOR_OP, a=>'0', b=>'0', y=>'1'),
(operation => XNOR_OP, a=>'0', b=>'1', y=>'0'),
(operation => XNOR_OP, a=>'1', b=>'0', y=>'0'),
(operation => XNOR_OP, a=>'1', b=>'1', y=>'1')

);

Test data can be
generated externally,
and read into TB at
runtime.

30

Random Number Generator

• Impossible to enumerate all inputs.
• Need to simulate environment inputs
- Their value and timing hard to define precisely.

• Use function UNIFORM to simulate randomness.

use ieee.math_real.all
UNIFORM(seed1, seed2, x)
-- returns a pseudo-random number x with uniform distribution
-- in (0.0, 1.0)
-- seed1 and seed2 are seed values in [1, 2147483562] and
-- [1, 2147483398], respectively.

31

Random Reset
library ieee;
use ieee.math_real.all;
...
architecture behavior of testbench is
begin
process

constant delay_range : time := 10000 ns;
variable rand_delay : time : = 1 ns;
variable seed1, seed2: positive; -- seed values for random generator
variable rand: real; -- random real-number value in range 0 to 1.0

begin
reset <= ‘0’;
uniform(seed1, seed2, rand); -- generate random number
rand_delay := rand * delay_range;
wait for rand_delay;
reset <= ‘1’
wait for 10 ns;
reset <= ‘0’;

end process;
end behavior;

32

Random Data
library ieee;
use ieee.math_real.all;
...

architecture behavior of testbench is
signal d1, d2 : std_logic_vector(7 downto 0);

begin
process

constant data_range : integer := 255;
variable seed1, seed2: positive;
variable rand: real;

begin
wait until rising_edge(clk) and done = ‘1’;
uniform(seed1, seed2, rand);
d1 <= rand * data_range;
uniform(seed1, seed2, rand);
d2 <= rand * data_range;
start <= ‘1’;

end process;
end behavior;

33

Assert – Monitoring and Checking

➺Used to create self-checking montiors

➺Assert is a non-synthesizable statement whose
purpose is to write out messages on the screen
when problems are found during simulation.

➺Depending on the severity of the problem, the
simulator is instructed to continue simulation or
halt.

34

Assert – Syntax

ASSERT condition -- must hold during entire simulation

[REPORT "message“]
[SEVERITY severity_level];

The message is written when the condition is FALSE.

Severity_level can be:
Note, Warning, Error (default), or Failure.

35

Assert – Examples (1)

assert initial_value <= max_value
report "initial value too large"
severity error;

assert packet_length /= 0
report "empty network packet received"
severity warning;

assert reset = false
report "Initialization complete"
severity note;

36

Assert Example – Check Bin Div Results
Process(valid, dividend, divisor, ready, q, r)

variable dvdend, dvsor : …

Begin

wait until valid = ‘1’;

dvdend := dividend;

dvsor := divisor;

wait until ready = ‘1’;

assert q = dvdend / dvsor and

r = dvdend rem dvsor;

report ”division results are not correct"
severity error;

end process;

37

Summary

➺HW debug is difficult
➺Simulation offers full observability

➺Test generation is key
➺Your design is as good as how it is tested
➺Use randomness to exercise design for high coverage

➺Monitor/Checker allows automatic observation
and checking
➺Help pinpoint sources of bugs temporally and spatially
➺Reference model captures correct behavior
➺Assertions define properties of correct behavior

Backup
Developing Effective Testbenches

39

Report – Syntax

REPORT "message"
[SEVERITY severity_level];

The message is always written.

Severity_level can be:
Note (default), Warning, Error, or Failure.

40

Report - Examples

report "Initialization complete";

report "Current time = " & time'image(now);

report "Incorrect branch" severity error;

Interface : Combinational Logic

ALU

A

OPCODE
X_bin_pal

Y

X

Cin

Z

Cout
V

8

8
B

4

8

8

X_prime

N

F_active

Interface of an 8-bit ALU

Name Mode Width Meaning
A IN 8 Input A
B IN 8 Input B
Cin IN 1 Carry In

OPCODE IN 4 Operation Code
X OUT 8 Output or Least Significant Byte of Output

Y OUT 8 Most Significant Byte of Output or Zero
Z OUT 1 Zero Flag

Cout OUT 1 Carry out Flag
V OUT 1 Overflow Flag

F_active OUT 1 Logical OR of Z, Cout and V
X_bin_pal OUT 1 Flag set to high when the output X is a

binary palindromic number (numbers that
remain the same when binary digits are

reversed)
X_prime OUT 1 Flag set to high when the output X is a

prime number

N OUT 1 Flag set to high when the output X is a
negative number

Ports

Instruction Set
OPCODE OPERATION FORMULA Z Cout V X_bin_pal X_prime N

0000 AND X = A AND B ↕ - - ↕ ↕ 0
0001 OR X = A OR B ↕ - - ↕ ↕ 0
0010 XOR X = A XOR B ↕ - - ↕ ↕ 0
0011 XNOR X = A XNOR B ↕ - - ↕ ↕ 0
0100 Unsigned

Addition
(Cout:X) =

A + B
↕ ↕ - ↕ ↕ 0

0101 Signed Addition X = A + B ↕ - ↕ ↕ ↕ ↕
0110 Unsigned

Addition with
Carry

(Cout:X) =
A + B + Cin

↕ ↕ - ↕ ↕ 0

0111 Signed
Multiplication

(Y:X) = A * B ↕ - - ↕ ↕ ↕

1000 Unsigned
Multiplication

(Y:X) = A * B ↕ - - ↕ ↕ 0

1001 Unsigned
Subtraction

X = A - B ↕ ↕ - ↕ ↕ 0

1010 Rotation Left X = A <<< 1 ↕ - - ↕ ↕ 0
1011 Rotation Left with

Carry
(Cout:X) = (Cin:A) <<<

1
↕ ↕ - ↕ ↕ 0

1100 Logic Shift Right X = A >> 1 ↕ ↕ - ↕ ↕ 0
1101 Arithmetic Shift

Right
X = A >> 1 ↕ ↕ - ↕ ↕ ↕

1110 Logic Shift Left X = A << 1 ↕ ↕ ↕ ↕ ↕ ↕
1111 BCD to Binary

Conversion
(Y:X) = BCD2BIN(B:A) ↕ ↕ - ↕ ↕ -

Interface : Sequential Logic

Interface of an ALU_SEQ

ALU_SEQ
I

CLK

OP

SEL_OUT

RRESET

LOAD

SEL_IN

RUN
4

Z
Cout

V

F_active

X_bin_pal
X_prime

N

8

8

Ports
Name Mode Width Meaning
CLK IN 1 System clock
RESET IN 1 Reset active high

I IN 8 Value of an operand A or B
LOAD IN 1 Loading value at input I to one of the internal

registers holding A or B
(control signal active for one clock period;

the action takes place at the rising edge of the
clock)

SEL_IN IN 1 0: loading register A
1: loading register B

OP IN 4 Operation mode
RUN IN 1 Writing the result to registers holding X0, X1, Y0,

and Y1 (control signal active for one clock period;
the action takes place at the rising edge of the

clock)

Name Mode Width Meaning
SEL_OUT IN 1 0: R = X

1: R = Y
R OUT 8 Digit of a result
Z OUT 1 Zero flag.

Cout OUT 1 Carry out flag.
V OUT 1 Overflow flag.

F_active OUT 1 Logical OR of Z, Cout and V.
X_bin_pal OUT 1 Flag set to high when the output X is a binary

palindromic number (numbers that remain the same
when binary digits are reversed)

X_prime OUT 1 Flag set to high when the output X is a prime number

N OUT 1 Flag set to high when the output X is a negative
number

