CDA 4253/CIS 6930 FPGA System Design
VHDL Testbench Development

Hao Zheng
Comp. Sci & Eng
University of South Florida

Effort Spent On Verification

Trend in the percentage of total project time spent in verification

Responses

E |y 9
2007 Median = 5004a
5% w2010 Median = 55%0
A%
»% 2007
w20
%
%
P 1
1.::..u';l-jx‘l\'::« ‘31"1""‘ Q?llllo '::?‘I.Lo (g‘\n g\n g\n Q?‘\a ﬁu‘l\u
S A e e
SN S R U S R

> 70% projects spent > 40% time in verification

Validation, Verification, and Testing

-> Validation: Does the product meet customers’ wishes?
-> Am | building the right product?
-> Verification: Does the product meet the specification?

-> Am | building the product right?
-> Debugging begins when error is detected
-> Testing: Is chip fabricated as meant to?
->No short-circuits, open connects, slow transistors etc.
->Post-manufacturing tests at the silicon fab
—Accept/Reject
-> Often these are used interchangeably

- E.g., both terms are used: DUT (design under test) and DUV
(design under verification)

Basic Testbench Architecture

TESTBENCH

= Design
Supply £{=—] Under |
inputs ¥ —_| Test =
=— (DUT)

Testbench Defined

-> Testbench = VHDL entity that applies stimuli (drives the

inputs) to the Design Under Test (DUT) and (optionally)
verifies expected outputs.

— The results can be viewed in a waveform window or
written to a file.

-+ Since Testbench is written in VHDL, it is not restricted to
a single simulation tool (portability).

-> The same Testbench can be easily adapted to test

different implementations (i.e. different architectures) of
the same design.

The same testbench can be used to
test multiple implementations of the same circuit
(multiple architectures)

Testbench

T ___

design entity | DUT

/

Architecture 1

Architecture 2

T~

Architecture N

Possible sources of expected results
used for comparison

Testbench

Test
Generator

actual results

DUT

’:‘?
N

Reference Model

expected results

Testbench Anatomy

ENTITY my_entity_tb IS
--TB entity has no ports
END my_entity_tb;

ARCHITECTURE behavioral OF tb IS
--Local signals and constants
BEGIN
DUT:entity work.TestComp PORT MAP(-- Instantiations of DUTs

);

test_vector: PROCESS
-- Input stimuli

END PROCESS;

monitor: process
-- monitor and check the outputs from DUT
end process;

END behavioral;

b

Process without Sensitivity List
and its use in Testbenches

What is a PROCESS?

-> A process is a sequence of instructions referred to as
sequential statements.

A be gi i -
« A process can be given a unique name _
- : »Testing: PROCESS
using an optional LABEL BECIN
« This is followed by the keyword 4 ﬁﬁ—\égﬁt%c 0075
ns;
PROCESS test_vector<=“01";
« The keyword BEGIN is used to indicate < \"'\:/AII FORt10 nfl;O”
est_vector<= :
the start of the process WAIT FOR 10 ns:
- All statements within the process are test_vector<="11";
executed SEQUENTIALLY. Hence, ~ WAIT FOR 10 ns;

order of statements is important. END PROCESS;

A process cannot have a sensitivity list and use wait statements

10

Execution of statements in a PROCESS

The execution of statements
continues sequentially till the
last statement in the process.

After execution of the last
statement, the control is again
passed to the beginning of the
process.

Testing: PROCESS
BEGIN

test vector<=“00";
WAIT FOR 10 ns;
test vector<=“01";
WAIT FOR 10 ns;
test vector<=“10";
WAIT FOR 10 ns;
test vector<=“11";
WAIT FOR 10 ns;
END PROCESS;

c
el
=

]

O

@

x

)
—

o

C

[}
o

2
]

Program control is passed to the
first statement after BEGIN

11

PROCESS with a WAIT Statement

The last statement in the Testing: PROCESS

PROCESS is a WAIT instead of BEGIN
WAIT FOR 10 ns. test_vector<=“00";

This will cause the_ PROCESS WAIT FOR 10 ns:
to suspend indefinitely when
the WAIT statement is
executed.

This form of WAIT can be used
in a process included in a

testbench when all possible test vector<=“11":
combinations of inputs have WAITT ’

been tested or a non-periodical
signal has to be generated. END PROCESS;

Program execution stops here

test_vector<="01";
WAIT FOR 10 ns;
test_vector<=“10";
WAIT FOR 10 ns;

Order of execution

12

WAIT FOR vs. WAIT

WAIT FOR 10ns : waveform will keep
repeating itself forever

EOXOXXXX KD -+

WAIT : waveform will keep its state after the
last walt instruction.

XXX
:

“WAIT;” executed here

13

Specifying time in VHDL

14

Time Values — Examples

[nNs<

1 min

min
10.65 us
10.65 fs

N

Numeric value Space
(required)

unit of time
most commonly
used in simulation

15

Units of time

Unit Definition

Base Unit

fs femtoseconds (10-1° seconds)
Derived Units

pPS picoseconds (10-12 seconds)
ns nanoseconds (10-° seconds)
us microseconds (10-° seconds)
ms miliseconds (103 seconds)
sec seconds

min minutes (60 seconds)

hr hours (3600 seconds)

16

Simple Testbenches

17

Generating Clock Signal

CONSTANT clkl_period : TIME :
CONSTANT clk2_period : TIME :
SIGNAL clkl : STD_LOGIC;

SIGNAL clk2 : STD_LOGIC := ‘0’;

20 ns;
200 ns;

begin
clkl_generator: PROCESS
begin
clkl <= ‘0’;
WAIT FOR clkl_period/2;
clkl <= ‘1°;
WAIT FOR clkl_period/2;
END PROCESS;

clk2 <= not clk2 after clk2_period/2;

END behavioral;

18

Generate One-Time Signals — Reset

Architecture behavioral

CONSTANT resetl_width : TIME :

CONSTANT reset2_width : TIME :

SIGNAL resetl : STD_LOGIC;

SIGNAL reset?2 : STD_LOGIC :=
BEGIN

resetl_generator: process

begin

resetl <= ‘1’;
WAIT FOR resetl_width;
resetl <= ‘0’;
WAIT;
end process;
END behavioral;

100 ns;
150 ns;

‘1’;

reset2_generator: process
begin
WAIT FOR reset2_width;
reset2 <= ‘0’;
WAIT;
end process;

19

Test Vectors

Set of pairs: {Input Values i, Expected Outputs Values i}

Input Values 1, Expected Output Values 1
Input Values 2, Expected Output Values 2

Input Values N, Expected Output Values N

Test vectors can cover either:

- all combinations of inputs (for very simple circuits only)
- selected representative combinations of inputs
(most realistic circuits)

20

Generating selected values of one input

signal test_vector : std_logic_vector(2 downto 0);

testing: PROCESS

BEGIN
test_vector <= "000";
WAIT FOR 10 ns;
test_vector <= "001";
WAIT FOR 10 ns;
test_vector <= "010";
WAIT FOR 10 ns;
test_vector <= "011";
WAIT FOR 10 ns;
test_vector <= "100";
WAIT FOR 10 ns;

END PROCESS;

END behavioral;

Generating all values of one input

USE 1ieee.std_logic_unsigned.all;

SIGNAL test_vector : STD_LOGIC_VECTOR(2 downto 0):="000";

testing: PROCESS
BEGIN

WAIT FOR 10 ns;

test_vector <= test_vector + 1;
end process TESTING;

END behavioral;

22

Generating all possible values of two inputs

USE ieee.std_logic_unsigned.all;

SIGNAL test_ab : STD_LOGIC_VECTOR(2 downto 0);
SIGNAL test_sel : STD_LOGIC_VECTOR(1 downto 0);
BEGIN

double_Tloop: PROCESS
BEGIN
test_ab <="00";
test_sel <="00";
for I in 0 to 3 Toop
for J in 0 to 3 Tloop
wait for 10 ns;
test_ab <= test_ab + 1;
end loop;
test_sel <= test_sel + 1;
end loop;
END PROCESS;

END behavioral;

23

Checking Outputs

test_generator: PROCESS
begin
-- apply a test vector to 1nputs
wait until rising_edge(clkl);
END PROCESS;

Monitor: PROCESS
begin
wait until rising_edge(clkl);
-- check the design output
END PROCESS;

24

Example: Arbiter

test_generator: PROCESS
variable req : unsigned(l to 3)

begin
r <= std_logic_vector(req);
req := req + 0017;
wait until rising_edge(clkl);

END PROCESS;

Il
-

Monitor: PROCESS
begin
wait until rising_edge(clkl);
-- check that at most one g is ‘1’

END PROCESS;

25

More Advanced Testbenches

26

More Advanced Testbenches

Input
: :'I> Design Under
;tlm ulus Test (DUT)
enerator Monitor
> Reference
Model
The reference model can be ~
A C program Design

* in VHDL

Correct/Incorrect

27

Test Generation — Records

TYPE test vector IS RECORD
operation :STD LOGIC VECTOR(1 DOWNTO 0);

a : STD_LOGIC;

b : STD_LOGIC;

y : STD_LOGIC;
END RECORD;

CONSTANT num_vectors : INTEGER := 16;
TYPE test_vectors IS ARRAY (0 TO num_vectors-1) OF test_vector;

CONSTANT and_op :STD_LOGIC_VECTOR(1 DOWNTO 0) :="00"%
CONSTANT or_op : STD_LOGIC_VECTOR(1 DOWNTO 0) :="01"
CONSTANT xor_op :STD_LOGIC_VECTOR(1 DOWNTO 0) :="10"
CONSTANT xnor_op :STD_LOGIC_VECTOR(1 DOWNTO 0) :="11%

28

Test Generation — Records

CONSTANT test_vector_table: test_vectors :=(

(operation => AND OP,
(operation => AND OP,
(operation => AND OP,
(operation => AND OP,
(operation => OR_OP,
(operation => OR_OP,
(operation => OR_OP,
(operation => OR_OP,
(operation => XOR_OP,
(operation => XOR_OP,
(operation => XOR_OP,
(operation => XOR_OP,

(operation => XNOR_OP, a=>'0", b=>'0", y=>'1"),
(operation => XNOR_OP, a=>'0", b=>"1", y=>'0"),
(operation => XNOR_OP, a=>'1", b=>'0", y=>'0"),

a=>'0', b=>'0", y=>'0'),
a=>'0', b=>'1", y=>'0'),
a=>'1, b=>'0", y=>'0'),
a=>'1", b=>'1", y=>'1"),
a=>'0', b=>'0", y=>'0'),
a=>'0', b=>'1", y=>'1"),
a=>'1", b=>'0', y=>'1"),
a=>'1", b=>'1", y=>'1"),
a=>'0', b=>'0', y=>'0'),
a=>'0', b=>'1", y=>'1"),
a=>'1", b=>'0', y=>'1"),
a=>'1", b=>'1", y=>'0'),

(operation => XNOR_OP, a=>'1", b=>'1", y=>"1")

Test data can be
generated externally,
and read into TB at
runtime.

29

Random Number Generator

e Impossible to enumerate all inputs.

e Need to simulate environment inputs
— Their value and timing hard to define precisely.

e Use function UNIFORM to simulate randomness.

use ieee.math_real.all

UNIFORM(seed1, seed?2, x)

-- returns a pseudo-random number x with uniform distribution
--in (0.0, 1.0)

-- seed1 and seed?2 are seed values in [1, 2147483562] and
--[1, 2147483398], respectively.

30

Random Reset

Tibrary ieee;
use ieee.math_real.all;

architecture behavior of testbench is

begin
process
constant delay_range : time := 10000 ns;
variable rand_delay : time : = 1 ns;
variable seedl, seed2: positive; -- seed values for random generator
variable rand: real; -- random real-number value in range 0 to 1.0
begin
reset <= ‘0’;
uniform(seedl, seed2, rand); -- generate random number
rand_delay := rand * delay_range;

wait for rand_delay;
reset <= ‘1’
wait for 10 ns;
reset <= ‘0’;

end process;

end behavior;

31

Random Data

Tibrary ieee;
use ieee.math_real.all;

architecture behavior of testbench is
signal dl1, d2 : std_logic_vector(7 downto 0);
begin
process
constant data_range : integer := 255;
variable seedl, seed2: positive;
variable rand: real;
begin
wait until rising_edge(clk) and done = ‘1’;
uniform(seedl, seed2, rand);
dl <= rand * data_range;
uniform(seedl, seed2, rand);
d2 <= rand * data_range;
start <= ‘1’;
end process;
end behavior;

32

Assert — Monitoring and Checking

->Used to create self-checking montiors

->Assert is a non-synthesizable statement whose
purpose is to write out messages on the screen
when problems are found during simulation.

->Depending on the severity of the problem, the
simulator is instructed to continue simulation or
halt.

33

Assert — Syntax

ASSERT condition -- must hold during entire simulation
[REPORT "message”]
[SEVERITY severity_level];

The message is written when the condition is FALSE.

Severity level can be:
Note, Warning, Error (default), or Failure.

34

Assert — Examples (1)

assert initial_value <= max_value
report "initial value too large"
severity error;

assert packet_length /=0
report "empty network packet received"
severity warning;

assert reset = false
report "Initialization complete”
severity note;

35

Assert Example — Check Bin Div Results

Process(valid, dividend, divisor, ready, q, r)
variable dvdend, dvsor : ..

Begin
wailt until valid = ‘1°;
dvdend := dividend;
dvsor := divisor;
walt until ready = ‘1’;

assert q = dvdend / dvsor and
r = dvdend rem dvsor;

report “division results are not correct"”
severity error;

end process;

36

Summary

->HW debug is difficult

->Simulation offers full observability

->Test generation is key

->Your design is as good as how it is tested
->Use randomness to exercise design for high coverage
—Monitor/Checker allows automatic observation
and checking
->Help pinpoint sources of bugs temporally and spatially
->Reference model captures correct behavior

->Assertions define properties of correct behavior

37

Backup
Developing Effective Testbenches

Report — Syntax

REPORT "message”
[SEVERITY severity level |;

The message is always written.

Severity level can be:
Note (default), Warning, Error, or Failure.

39

Report - Examples

report "Initialization complete”;

report "Current time =" & time'image(now);

report "Incorrect branch” severity error;

40

Interface : Combinational Logic

8
8 ——» Y
A >
8
—F—» X
B 8 > > Z
— Cout
4 —» F_active
OPCODE >

Interface of an 8-bit ALU

Ports

Name Mode | Width Meaning
A IN 8 Input A
B IN 8 Input B
Cin IN 1 Carry In
OPCODE IN 4 Operation Code
X ouT 8 Output or Least Significant Byte of Output
Y ouT 8 Most Significant Byte of Output or Zero
Z ouT 1 Zero Flag
Cout ouT 1 Carry out Flag
Vv ouT 1 Overflow Flag
F_active ouT 1 Logical OR of Z, Cout and V
X_bin_pal ouT 1 Flag set to high when the output X is a
binary palindromic number (numbers that
remain the same when binary digits are
reversed)
X_prime ouT 1 Flag set to high when the output X is a
prime number
N ouT 1 Flag set to high when the output X is a

negative number

Instruction Set

OPCODE OPERATION FORMULA Z | Cout X_bin_pal | X_prime | N
0000 AND X=AANDB) —) 0 0
0001 OR X=AORB) —) 0 0
0010 XOR X=AXORB) —) 0 0
0011 XNOR X =AXNOR B) —) 0 0
0100 Unsigned (Cout:X) =)))) 0

Addition A+B
0101 Signed Addition X=A+B) —) 0)
0110 Unsigned (Cout:X) =)))) 0
Addition with A+ B+ Cin
Carry
0111 Signed (Y:X)=A*B) —) 0)
Multiplication
1000 Unsigned (Y:X)=A*B) —) () 0
Multiplication
1001 Unsigned X=A-B)) ()) 0
Subtraction
1010 Rotation Left X=A<<<1) -) () 0
1011 Rotation Left with | (Cout:X) = (Cin:A) <<< | { 0) () 0
Carry 1
1100 Logic Shift Right X=A>>1)))) 0
1101 Arithmetic Shift X=A>1) T) 0)
Right
1110 Logic Shift Left X=A<<1)))))
1111 BCD to Binary | (Y:X) =BCD2BIN(B:A) |) ()) -

Conversion

Interface : Sequential Logic

RESET —»
CLK —»

ALU_SEQ

4>Z

—— Cout

>V

—— > F_active

—» X_bin_pal

——» X _prime

Interface of an ALU_SEQ

Ports

Name Mode | Width Meaning
CLK IN 1 System clock
RESET IN 1 Reset active high
I IN 8 Value of an operand A or B
LOAD IN 1 Loading value at input | to one of the internal
registers holding A or B
(control signal active for one clock period;
the action takes place at the rising edge of the
clock)
SEL_IN IN 1 0: loading register A
1: loading register B
oP IN 4 Operation mode
RUN IN 1 Writing the result to registers holding X0, X1, YO,

and Y1 (control signal active for one clock period;
the action takes place at the rising edge of the
clock)

Name Mode | Width Meaning
SEL_OUT IN 1 0:R=X
1:R=Y
R ouT 8 Digit of a result
Z ouT 1 Zero flag.
Cout ouT 1 Carry out flag.
\" ouT 1 Overflow flag.
F_active ouT 1 Logical OR of Z, Cout and V.
X_bin_pal ouT 1 Flag set to high when the output X is a binary
palindromic number (numbers that remain the same
when binary digits are reversed)
X_prime ouT 1 Flag set to high when the output X is a prime number
N ouT 1 Flag set to high when the output X is a negative

number

