
CDA 4253 FGPA System Design
Xilinx FPGA Memories

Dr. Hao Zheng
Comp Sci & Eng

University of South Florida

Xilinx 7-Series FPGA Architecture

On-Chip block RAM On-Chip block RAM

Distributed
RAM by
Logic Fabric

Distributed
RAM by
Logic Fabric

3

Recommended Reading

• 7 Series FPGA Memory Resources: User Guide

Google search: UG473

• 7 Series FPGA Configurable Logic Block: User Guide

Google search: UG474

• Xilinx 7 Series FPGA Embedded Memory Advantages: White

Paper

Google search: WP377

• XST User Guide for Virtex-6, Spartan-6, and 7 Series Device

Google search: UG687

• Chu’s book, chapter 7

4

Memory Types

5

Generic Memory Types

Memory

Single port Dual port

With asynchronous
read

With synchronous
read

Memory

Memory

RAM ROM

6

Memory Types Specific to Xilinx FPGAs

Memory

Distributed
(MLUT-based)

Block RAM-based
(BRAM-based)

Inferred Instantiated

Memory

Manually Using CORE
Generator

7

On-Chip Memory
➜Distributed RAM

➜ Synchronous write
➜ Asynchronous read

➜Block Ram
➜ Synchronous write
➜ Synchronous read

8

FPGA Distributed Memory
7 Series FPGAs Configurable Logic Block User Guide

UG474 (v1.7) November 17, 2014

9

Zynq-7000 SoC Data Sheet: Overview

DS190 (v1.11.1) July 2, 2018 www.xilinx.com
Product Specification 3

P
ro

gr
am

m
ab

le
 L

og
ic

Xilinx 7 Series
Programmable Logic
Equivalent

Artix®-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Kintex®-7
FPGA

Kintex-7
FPGA

Kintex-7
FPGA

Kintex-7
FPGA

Programmable Logic
Cells 23K 55K 65K 28K 74K 85K 125K 275K 350K 444K

Look-Up Tables (LUTs) 14,400 34,400 40,600 17,600 46,200 53,200 78,600 171,900 218,600 277,400

Flip-Flops 28,800 68,800 81,200 35,200 92,400 106,400 157,200 343,800 437,200 554,800

Block RAM
(# 36 Kb Blocks)

1.8 Mb
(50)

2.5 Mb
(72)

3.8 Mb
(107)

2.1 Mb
(60)

3.3 Mb
(95)

 4.9 Mb
(140)

9.3 Mb
(265)

17.6 Mb
(500)

19.2 Mb
(545)

26.5 Mb
(755)

DSP Slices
(18x25 MACCs) 66 120 170 80 160 220 400 900 900 2,020

Peak DSP
Performance
(Symmetric FIR)

73
GMACs

131
GMACs

187
GMACs

100
GMACs

200
GMACs

276
GMACs

593
GMACs

1,334
GMACs

1,334
GMACs

2,622
GMACs

PCI Express
(Root Complex or
Endpoint)(3)

Gen2 x4 Gen2 x4 Gen2 x4 Gen2 x8 Gen2 x8 Gen2 x8

Analog Mixed Signal
(AMS) / XADC

2x 12 bit, MSPS ADCs with up to 17 Differential Inputs

Security(2) AES and SHA 256b for Boot Code and Programmable Logic Configuration, Decryption, and Authentication

Notes:
1. Restrictions apply for CLG225 package. Refer to the UG585, Zynq-7000 SoC Technical Reference Manual (TRM) for details.
2. Security is shared by the Processing System and the Programmable Logic.
3. Refer to PG054, 7 Series FPGAs Integrated Block for PCI Express for PCI Express support in specific devices.

Table 1: Zynq-7000 and Zynq-7000S SoCs (Cont’d)
Device Name Z-7007S Z-7012S Z-7014S Z-7010 Z-7015 Z-7020 Z-7030 Z-7035 Z-7045 Z-7100

Part Number XC7Z007S XC7Z012S XC7Z014S XC7Z010 XC7Z015 XC7Z020 XC7Z030 XC7Z035 XC7Z045 XC7Z100

Source: Zynq-7000 SoC Data Sheet: Overview, DS 190

10

7 Series FPGA CLB Resources

7 Series FPGAs CLB User Guide www.xilinx.com 17
UG474 (v1.7) November 17, 2014

CLB Arrangement

The Xilinx tools designate slices with these definitions:

• An “X” followed by a number identifies the position of each slice in a pair as well as
the column position of the slice. The “X” number counts slices starting from the
bottom in sequence 0, 1 (the first CLB column); 2, 3 (the second CLB column); etc.

• A “Y” followed by a number identifies a row of slices. The number remains the same
within a CLB, but counts up in sequence from one CLB row to the next CLB row,
starting from the bottom.

Figure 2-2 shows four CLBs located in the bottom-left corner of the die.

CLB/Slice Configurations
Table 2-1 summarizes the logic resources in one CLB. Each SLICEM LUT can be configured
as a look-up table, distributed RAM, or a shift register.

X-Ref Target - Figure 2-2

Figure 2-2: Row and Column Relationship between CLBs and Slices

Slice1
X1Y1

COUTCOUT

CINCIN

Slice0
X0Y1

CLB

UG474_c2_01_092210

Slice1
X1Y0

COUTCOUT

Slice0
X0Y0

CLB

Slice1
X3Y1

COUTCOUT

CINCIN

Slice0
X2Y1

CLB

Slice1
X3Y0

COUTCOUT

Slice0
X2Y0

CLB

Table 2-1: Logic Resources in One CLB

Slices LUTs Flip-Flops Arithmetic and
Carry Chains Distributed RAM(1) Shift Registers(1)

2 8 16 2 256 bits 128 bits

Notes:
1. SLICEM only, SLICEL does not have distributed RAM or shift registers.

11

7 Series FPGA Distributed RAM Config.

24 www.xilinx.com 7 Series FPGAs CLB User Guide
UG474 (v1.7) November 17, 2014

Chapter 2: Functional Details

• Single-Port 256 x 1-bit RAM

Distributed RAM modules are synchronous (write) resources. A synchronous read can be
implemented with a flip-flop in the same slice. By using this flip-flop, the distributed RAM
performance is improved by decreasing the delay into the clock-to-out value of the
flip-flop. However, an additional clock latency is added. The distributed elements share
the same clock input. For a write operation, the Write Enable (WE) input, driven by either
the CE or WE pin of a SLICEM, must be set High.

Table 2-3 shows the number of LUTs (four per slice) occupied by each distributed RAM
configuration. See UG953, Vivado Design Suite 7 Series FPGA and Zynq-7000 All
Programmable SoC Libraries Guide for details of available distributed RAM primitives.

Distributed RAM configurations include:

• Single port

• Common address port for synchronous writes and asynchronous reads

- Read and write addresses share the same address bus

• Dual port

• One port for synchronous writes and asynchronous reads

- One function generator is connected with the shared read and write port
address

• One port for asynchronous reads

- Second function generator has the A inputs connected to a second read-only
port address, and the WA inputs are shared with the first read/write port
address

Table 2-3: Distributed RAM Configuration

RAM Description Primitive Number of LUTs

32 x 1S Single port RAM32X1S 1

32 x 1D Dual port RAM32X1D 2

32 x 2Q Quad port RAM32M 4

32 x 6SDP Simple dual port RAM32M 4

64 x 1S Single port RAM64X1S 1

64 x 1D Dual port RAM64X1D 2

64 x 1Q Quad port RAM64M 4

64 x 3SDP Simple dual port RAM64M 4

128 x 1S Single port RAM128X1S 2

128 x 1D Dual port RAM128X1D 4

256 x 1S Single port RAM256X1S 4

12

Single-Port 64x1-bit Distributed RAM

28 www.xilinx.com 7 Series FPGAs CLB User Guide
UG474 (v1.7) November 17, 2014

Chapter 2: Functional Details

If four single-port 64 x 1-bit modules are each built as shown in Figure 2-8, the four
RAM64X1S primitives can occupy a SLICEM, as long as they share the same clock, write
enable, and shared read and write port address inputs. This configuration equates to a
64 x 4-bit single-port distributed RAM.

If two dual-port 64 x 1-bit modules are each built as shown in Figure 2-9, the two
RAM64X1D primitives can occupy a SLICEM, as long as they share the same clock, write
enable, and shared read and write port address inputs. This configuration equates to a
64 x 2-bit dual-port distributed RAM.

X-Ref Target - Figure 2-8

Figure 2-8: 64 X 1 Single Port Distributed RAM (RAM64X1S)

X-Ref Target - Figure 2-9

Figure 2-9: 64 X 1 Dual Port Distributed RAM (RAM64X1D)

UG474_c2_07_101210

Output

Registered
Output

(Optional)

DI1

D Q

(DI)
D

A[5:0]

WCLK
WE

(D[6:1])

(CLK)
(WE/CE)

6

SPRAM64

RAM64X1S

A[6:1]
WA[6:1]
CLK
WE

O6
O

6

UG474_c2_08_101210

DI1
(DI)

D

A[5:0]

WCLK
WE

(D[6:1])

(CLK)
(WE/CE)

6
6

DPRAM64

RAM64X1D

A[6:1]
WA[6:1]
CLK
WE

O6

DI1

DPRA[5:0]
(C[6:1]) 6

6

DPRAM64

A[6:1]
WA[6:1]
CLK
WE

O6

Registered
Output

(Optional)

D Q

SPO

Registered
Output

(Optional)

D Q

DPO

Four of these signal port 64x1 RAMs can be implemented in
a single SLICEM to form a 64x4b RAM.

Dual-Port 64x1b Distributed RAM

28 www.xilinx.com 7 Series FPGAs CLB User Guide
UG474 (v1.7) November 17, 2014

Chapter 2: Functional Details

If four single-port 64 x 1-bit modules are each built as shown in Figure 2-8, the four
RAM64X1S primitives can occupy a SLICEM, as long as they share the same clock, write
enable, and shared read and write port address inputs. This configuration equates to a
64 x 4-bit single-port distributed RAM.

If two dual-port 64 x 1-bit modules are each built as shown in Figure 2-9, the two
RAM64X1D primitives can occupy a SLICEM, as long as they share the same clock, write
enable, and shared read and write port address inputs. This configuration equates to a
64 x 2-bit dual-port distributed RAM.

X-Ref Target - Figure 2-8

Figure 2-8: 64 X 1 Single Port Distributed RAM (RAM64X1S)

X-Ref Target - Figure 2-9

Figure 2-9: 64 X 1 Dual Port Distributed RAM (RAM64X1D)

UG474_c2_07_101210

Output

Registered
Output

(Optional)

DI1

D Q

(DI)
D

A[5:0]

WCLK
WE

(D[6:1])

(CLK)
(WE/CE)

6

SPRAM64

RAM64X1S

A[6:1]
WA[6:1]
CLK
WE

O6
O

6

UG474_c2_08_101210

DI1
(DI)

D

A[5:0]

WCLK
WE

(D[6:1])

(CLK)
(WE/CE)

6
6

DPRAM64

RAM64X1D

A[6:1]
WA[6:1]
CLK
WE

O6

DI1

DPRA[5:0]
(C[6:1]) 6

6

DPRAM64

A[6:1]
WA[6:1]
CLK
WE

O6

Registered
Output

(Optional)

D Q

SPO

Registered
Output

(Optional)

D Q

DPO

Single-Port 128x1b Distributed RAM

7 Series FPGAs CLB User Guide www.xilinx.com 31
UG474 (v1.7) November 17, 2014

Distributed RAM (Available in SLICEM Only)

X-Ref Target - Figure 2-12

Figure 2-12: 128 X 1 Single Port Distributed RAM (RAM128X1S)

UG474_c2_11_101210

DI1
(DI)

A6 (CX)

D

A[6:0]

WCLK
WE

(CLK)
(WE/CE)

[5:0]

[5:0]

7

SPRAM64

RAM128X1S

A[6:1]
WA[7:1]
CLK
WE

O6

DI1

7

SPRAM64

A[6:1]
WA[7:1]
CLK
WE

O6

Registered
Output

Output

F7BMUX

(Optional)

D Q

0

15

7 Series FPGA ROM Configurations on LUTs

34 www.xilinx.com 7 Series FPGAs CLB User Guide
UG474 (v1.7) November 17, 2014

Chapter 2: Functional Details

Distributed RAM Data Flow

Synchronous Write Operation

The synchronous write operation is a single clock-edge operation with an active-High
write-enable (WE) feature. When WE is High, the input (D) is loaded into the memory
location at address A.

Asynchronous Read Operation

The output is determined by the address A for the single-port mode output SPO of
dual-port mode, or address DPRA for the DPO output of dual-port mode. Each time a new
address is applied to the address pins, the data value in the memory location of that
address is available on the output after the time delay to access the LUT. This operation is
asynchronous and independent of the clock signal.

Distributed RAM Summary
Here is a summary of distributed RAM features:

• Single-port and dual-port modes are available in SLICEMs

• A write operation requires one clock edge

• Read operations are asynchronous (Q output)

• The data input has a setup-to-clock timing specification

Read Only Memory (ROM)
Each function generator in both SLICEMs and SLICELs can implement a 64 x 1-bit ROM.
Three configurations are available: ROM64X1, ROM128X1, and ROM256X1. ROM contents
are loaded at each device configuration. Table 2-4 shows the number of LUTs occupied by
each ROM configuration size.

Shift Registers (Available in SLICEM Only)
A SLICEM function generator can also be configured as a 32-bit shift register without using
the flip-flops available in a slice. Used in this way, each LUT can delay serial data from 1 to
32 clock cycles. The shiftin D (DI1 LUT pin) and shiftout Q31 (MC31 LUT pin) lines cascade
LUTs to form larger shift registers. The four LUTs in a SLICEM are thus cascaded to
produce delays up to 128 clock cycles. It is also possible to combine shift registers across
more than one SLICEM. There are no direct connections between slices to form longer shift
registers, nor is the MC31 output at LUT B/C/D available. The resulting programmable
delays can be used to balance the timing of data pipelines.

Table 2-4: ROM Configuration

ROM Number of LUTs

64 x 1 1

128 x 1 2

256 x 1 4

Configuration Primitives:
• ROM64X1
• ROM128X1
• ROM256X1

LUTs are often used to implemented small memories
with less than 256 bits.

16

FPGA Block RAM
7 Series FPGAs Memory Resources User Guide

UG 473 2014

17

Location of Block RAMs

On-Chip block RAM On-Chip block RAM

Use block RAM for storage with 64+ depth or 16+ width.

18

7 Series FPGA Block RAM Resources

Each 36Kb block RAM can be configured as two
independent 18Kb RAM blocks.

Zynq-7000 SoC Data Sheet: Overview

DS190 (v1.11.1) July 2, 2018 www.xilinx.com
Product Specification 3

P
ro

gr
am

m
ab

le
 L

og
ic

Xilinx 7 Series
Programmable Logic
Equivalent

Artix®-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Artix-7
FPGA

Kintex®-7
FPGA

Kintex-7
FPGA

Kintex-7
FPGA

Kintex-7
FPGA

Programmable Logic
Cells 23K 55K 65K 28K 74K 85K 125K 275K 350K 444K

Look-Up Tables (LUTs) 14,400 34,400 40,600 17,600 46,200 53,200 78,600 171,900 218,600 277,400

Flip-Flops 28,800 68,800 81,200 35,200 92,400 106,400 157,200 343,800 437,200 554,800

Block RAM
(# 36 Kb Blocks)

1.8 Mb
(50)

2.5 Mb
(72)

3.8 Mb
(107)

2.1 Mb
(60)

3.3 Mb
(95)

 4.9 Mb
(140)

9.3 Mb
(265)

17.6 Mb
(500)

19.2 Mb
(545)

26.5 Mb
(755)

DSP Slices
(18x25 MACCs) 66 120 170 80 160 220 400 900 900 2,020

Peak DSP
Performance
(Symmetric FIR)

73
GMACs

131
GMACs

187
GMACs

100
GMACs

200
GMACs

276
GMACs

593
GMACs

1,334
GMACs

1,334
GMACs

2,622
GMACs

PCI Express
(Root Complex or
Endpoint)(3)

Gen2 x4 Gen2 x4 Gen2 x4 Gen2 x8 Gen2 x8 Gen2 x8

Analog Mixed Signal
(AMS) / XADC

2x 12 bit, MSPS ADCs with up to 17 Differential Inputs

Security(2) AES and SHA 256b for Boot Code and Programmable Logic Configuration, Decryption, and Authentication

Notes:
1. Restrictions apply for CLG225 package. Refer to the UG585, Zynq-7000 SoC Technical Reference Manual (TRM) for details.
2. Security is shared by the Processing System and the Programmable Logic.
3. Refer to PG054, 7 Series FPGAs Integrated Block for PCI Express for PCI Express support in specific devices.

Table 1: Zynq-7000 and Zynq-7000S SoCs (Cont’d)
Device Name Z-7007S Z-7012S Z-7014S Z-7010 Z-7015 Z-7020 Z-7030 Z-7035 Z-7045 Z-7100

Part Number XC7Z007S XC7Z012S XC7Z014S XC7Z010 XC7Z015 XC7Z020 XC7Z030 XC7Z035 XC7Z045 XC7Z100

19

Block RAM Configurations (Aspect Ratios)

0

32767

1

8K x 4

4,095

4
0

16K x 2

16383

2
0

4095

8+1
0

1023

32+4
0

32k x 1

4k x (8+1)

1024 x 36

20

Block RAM Interface
True Dual Port

7 Series FPGAs Memory Resources www.xilinx.com 15
UG473 (v1.11) November 12, 2014

Synchronous Dual-Port and Single-Port RAMs

Synchronous Dual-Port and Single-Port RAMs

Data Flow
The true dual-port 36 Kb block RAM dual-port memories consist of a 36 Kb storage area
and two completely independent access ports, A and B. Similarly, each 18 Kb block RAM
dual-port memory consists of an 18 Kb storage area and two completely independent
access ports, A and B. The structure is fully symmetrical, and both ports are
interchangeable. Figure 1-1 illustrates the true dual-port data flow of a RAMB36. Table 1-3
lists the port functions and descriptions.

Data can be written to either or both ports and can be read from either or both ports. Each
write operation is synchronous, each port has its own address, data in, data out, clock,
clock enable, and write enable. The read and write operations are synchronous and require
a clock edge.

There is no dedicated monitor to arbitrate the effect of identical addresses on both ports. It
is up to you to time the two clocks appropriately. Conflicting simultaneous writes to the
same location never cause any physical damage but can result in data uncertainty.
X-Ref Target - Figure 1-1

Figure 1-1: True Dual-Port Data Flows for a RAMB36

DOPA

DIPA

ADDRA

WEA
ENA

CASCADEOUTB

RSTRAMA

CLKA

RSTREGA

REGCEA

REGCEB

DIPB
ADDRB
WEB
ENB

RSTRAMB
RSTREGB

CLKB

36-Kbit Block RAM

UG473_c1_01_052610

DOPB

DOB

DOA

DIA

DIB

36 Kb
Memory

Array

Port A

32

4

32

4

16

4

32

4

16
4

32

4

Port B

CASCADEOUTA

CASCADEINBCASCADEINA

Ports A and B are fully
independent.

Each port has its own
address, data in/out,
clock, and WR enable.

Both read/write are
synchronous.

Simultaneously writing to
the same address causes
data uncertainty.

21

Block RAM Interface
Simple Dual Port

20 www.xilinx.com 7 Series FPGAs Memory Resources
UG473 (v1.11) November 12, 2014

Chapter 1: Block RAM Resources

Simple Dual-Port Block RAM
Each 18 Kb block and 36 Kb block can also be configured in a simple dual-port RAM mode.
In this mode, the block RAM port width doubles to 36 bits for the 18 Kb block RAM and
72 bits for the 36 Kb block RAM. In simple dual-port mode, independent Read and Write
operations can occur simultaneously, where port A is designated as the Read port and
port B as the Write port. When the Read and Write port access the same data location at the
same time, it is treated as a collision, identical to the port collision in true dual-port mode.
Readback through the configuration port is supported in simple dual-port block RAM
mode. 7 series FPGAs support these modes in SDP (READ_FIRST, WRITE_FIRST).
Figure 1-6 shows the simple dual-port data flow for and RAMB36 in SDP mode.
X-Ref Target - Figure 1-6

Figure 1-6: RAMB36 in the Simple Dual-Port Data Flow

Table 1-4: Simple Dual-Port Functions and Descriptions

Port Function Description

DO Data Output Bus

DOP Data Output Parity Bus

DI Data Input Bus

DIP Data Input Parity Bus

RDADDR Read Data Address Bus

RDCLK Read Data Clock

RDEN Read Port Enable

REGCE Output Register Clock Enable

SBITERR Single Bit Error Status

DBITERR Double Bit Error Status

ECCPARITY ECC Encoder Output Bus

SSR Synchronous Set or Reset of Output Registers or Latches

WE Byte-wide Write Enable

WRADDR Write Data Address Bus

36 Kb Memory Array

DO

RDEN

RDADDR

RDCLK

REGCE

DIP

WRADDR

WE

WRCLK

WREN

DI

UG473_c1_06_011414

64

8

8

15

15

64

DOP
8

SSR

Independent read/write
ports.

Max port width is 64+8b.

Reading & writing to the
same mem location
causes data uncertainty.

22

23

VHDL Coding for Memory

XST User Guide for Virtex-6, Spartan-6, and 7 Series
Devices

Chapter 7, HDL Coding Techniques
Sections:

RAM HDL Coding Techniques
ROM HDL Coding Techniques

24

Distributed vs Block RAMs

• Distributed RAM: must be used for RAM descriptions
with asynchronous read.

• Block RAM: generally used for RAM descriptions with
synchronous read.

• Synchronous write for both types of RAMs.

• Any size and data width are allowed in RAM
descriptions.
- Depending on resource availability

• Up to two write ports are allowed.

25

Inferring ROM

26

Distributed ROM with Asynchronous Read

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ROM is
generic(w : integer := 7; -- number of bits per ROM word

r : integer := 4 -- 2^r = number of words in ROM

);
port (addr : in std_logic_vector(r-1 downto 0);

dout : out std_logic_vector(w-1 downto 0));
end ROM;

27

Distributed ROM with Asynchronous Read
architecture behavioral of ROM is

type rom_type is array (2**r-1 downto 0) of
std_logic_vector (w-1 downto 0);

constant ROM_array : rom_type := (
”1000000", ”1111001", ”0100100", ”0110000”,
”0011001", ”0010010", "0000010", "1111000”,
“0000000”. “0010000”, “0001000”, “0000011”,
“1000110”, “0100001”, “0000110”, “0001110”);

begin

dout <= ROM_array(conv_integer(addr));

end architecture behavioral;

How is it implemented?

28

Dual-Port ROM with Sync. Read in VHDL

Chapter 7: HDL Coding Techniques

Dual-Port ROM VHDL Coding Example
--
-- A dual-port ROM
-- Implementation on LUT or BRAM controlled with a ram_style constraint
--
-- Download: http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/roms_dualport.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity roms_dualport is
port (clk : in std_logic;

ena, enb : in std_logic;
addra, addrb : in std_logic_vector(5 downto 0);
dataa, datab : out std_logic_vector(19 downto 0));

end roms_dualport;

architecture behavioral of roms_dualport is

type rom_type is array (63 downto 0) of std_logic_vector (19 downto 0);
signal ROM : rom_type:= (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

-- attribute ram_style : string;
-- attribute ram_style of ROM : signal is "distributed";

begin

process (clk)
begin

if rising_edge(clk) then
if (ena = ’1’) then

dataa <= ROM(conv_integer(addra));
end if;

end if;
end process;

process (clk)
begin

if rising_edge(clk) then
if (enb = ’1’) then

datab <= ROM(conv_integer(addrb));
end if;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
268 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback

can be implemented
either on LUTs or

block RAMs.

29

Chapter 7: HDL Coding Techniques

Dual-Port ROM VHDL Coding Example
--
-- A dual-port ROM
-- Implementation on LUT or BRAM controlled with a ram_style constraint
--
-- Download: http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/roms_dualport.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity roms_dualport is
port (clk : in std_logic;

ena, enb : in std_logic;
addra, addrb : in std_logic_vector(5 downto 0);
dataa, datab : out std_logic_vector(19 downto 0));

end roms_dualport;

architecture behavioral of roms_dualport is

type rom_type is array (63 downto 0) of std_logic_vector (19 downto 0);
signal ROM : rom_type:= (X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",

X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

-- attribute ram_style : string;
-- attribute ram_style of ROM : signal is "distributed";

begin

process (clk)
begin

if rising_edge(clk) then
if (ena = ’1’) then

dataa <= ROM(conv_integer(addra));
end if;

end if;
end process;

process (clk)
begin

if rising_edge(clk) then
if (enb = ’1’) then

datab <= ROM(conv_integer(addrb));
end if;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
268 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback

Dual-Port ROM with Sync. Read in VHDL

Port 1

Port 2

30

Design Example

How to implement ?f =
9

5
⇥ c+ 32

31

Inferring RAM

32

Single-Port RAM with Async. Read

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity raminfr is
generic(w : integer := 32; -- number of bits per RAM word

r : integer := 3 -- 2^r = number of words in RAM

);
port(clk : in std_logic;

we : in std_logic;
addr: in std_logic_vector(r-1 downto 0);
di : in std_logic_vector(w-1 downto 0);
do : out std_logic_vector(w-1 downto 0));

end raminfr;

33

Single-Port RAM with Async. Read – cont’d
architecture behavioral of raminfr is

type ram_type is array (2**r-1 downto 0) of
std_logic_vector (w-1 downto 0);

signal RAM : ram_type;
begin

process (clk)
begin

if rising_edge(clk) then
if (we = '1') then

RAM(conv_integer(addr)) <= di;
end if;

end if;
end process;
do <= RAM(conv_integer(addr));-- async read

end behavioral;

34

Block RAM with Sync. Read (Read-First Mode)

35

Block RAM with Sync. Read (Read-First Mode)

36

Block RAM with Sync. Read (Read-First Mode)

process (clk)
begin

if rising_edge(clk) then
if (en = '1') then

do <= RAM(conv_integer(addr));
if (we = '1') then

RAM(conv_integer(addr)) <= di;
end if;

end if;
end if;

end process;

37

Block RAM with Sync. Read (Write-First
Mode)

38

Block RAM with Sync. Read (Write-First
Mode)

process (clk)
begin

if rising_edge(clk) then
if (en = '1') then

if (we = '1') then
RAM(conv_integer(addr)) <= di;
do <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end if;
end process;

39

Block RAM with Sync. Read (No-Change
Mode)

40

Block RAM with Sync. Read (No-Change
Mode)

process (clk)
begin

if rising_edge(clk) then
if (en = '1') then

if (we = '1') then
RAM(conv_integer(addr)) <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end if;
end process;

41

Block RAM Initialization

Example 1
type ram_type is array (0 to 127) of std_logic_vector(15 downto 0);
signal RAM : ram_type := (others => ”0000111100110101”;

Example 2
type ram_type is array (0 to 127) of std_logic_vector(15 downto 0);
signal RAM : ram_type := (others => (others => ‘1’));

Example 3
type ram_type is array (0 to 127) of std_logic_vector(15 downto 0);
signal RAM : ram_type := (196 downto 100 => X”B9B5”,

others => X”3344”);

42

Block RAM Initialization from a File

Chapter 7: HDL Coding Techniques

Verilog Coding Example Three
Specific address positions or address ranges are initialized.

reg [15:0] ram [255:0];

integer index;
initial begin

for (index = 0 ; index <= 97 ; index = index + 1)
ram[index] = 16’h8282;

ram[98] <= 16’h1111;
ram[99] <= 16’h7778;
for (index = 100 ; index <= 255 ; index = index + 1)

ram[index] = 16’hB8B8;
end

Specifying RAM Initial Contents in an External Data File
• Use the file read function in the HDL source code to load the RAM initial contents

from an external data file.
– The external data file is an ASCII text file with any name.
– Each line in the external data file describes the initial content at an address

position in the RAM.
– There must be as many lines in the external data file as there are rows in the

RAM array. An insufficient number of lines is flagged.
– The addressable position related to a given line is defined by the direction of

the primary range of the signal modeling the RAM.
– You can represent RAM content in either binary or hexadecimal. You cannot

mix both.
– The external data file cannot contain any other content, such as comments.

• The following external data file initializes an 8 x 32-bit RAM with binary values:

00001111000011110000111100001111
01001010001000001100000010000100
00000000001111100000000001000001
11111101010000011100010000100100
00001111000011110000111100001111
01001010001000001100000010000100
00000000001111100000000001000001
11111101010000011100010000100100

• For more information, see:
– VHDL File Type Support
– Chapter 5, Behavioral Verilog

VHDL Coding Example
Load the data as follows.

type RamType is array(0 to 127) of bit_vector(31 downto 0);

impure function InitRamFromFile (RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;

begin
for I in RamType’range loop

readline (RamFile, RamFileLine);
read (RamFileLine, RAM(I));

end loop;
return RAM;

end function;

signal RAM : RamType := InitRamFromFile("rams_20c.data");

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 14.5) March 20, 2013 www.xilinx.com 235

Send Feedback

rams_20c.data:
001011000101111011110010000100001111
101011000110011010101010110101110111
…
101011110111001011111000110001010000

128

use binary or hex, not mixing them

number of lines in the
file must match the
number of rows in
memory

43

Block RAM Interface
True Dual Port

7 Series FPGAs Memory Resources www.xilinx.com 15
UG473 (v1.11) November 12, 2014

Synchronous Dual-Port and Single-Port RAMs

Synchronous Dual-Port and Single-Port RAMs

Data Flow
The true dual-port 36 Kb block RAM dual-port memories consist of a 36 Kb storage area
and two completely independent access ports, A and B. Similarly, each 18 Kb block RAM
dual-port memory consists of an 18 Kb storage area and two completely independent
access ports, A and B. The structure is fully symmetrical, and both ports are
interchangeable. Figure 1-1 illustrates the true dual-port data flow of a RAMB36. Table 1-3
lists the port functions and descriptions.

Data can be written to either or both ports and can be read from either or both ports. Each
write operation is synchronous, each port has its own address, data in, data out, clock,
clock enable, and write enable. The read and write operations are synchronous and require
a clock edge.

There is no dedicated monitor to arbitrate the effect of identical addresses on both ports. It
is up to you to time the two clocks appropriately. Conflicting simultaneous writes to the
same location never cause any physical damage but can result in data uncertainty.
X-Ref Target - Figure 1-1

Figure 1-1: True Dual-Port Data Flows for a RAMB36

DOPA

DIPA

ADDRA

WEA
ENA

CASCADEOUTB

RSTRAMA

CLKA

RSTREGA

REGCEA

REGCEB

DIPB
ADDRB
WEB
ENB

RSTRAMB
RSTREGB

CLKB

36-Kbit Block RAM

UG473_c1_01_052610

DOPB

DOB

DOA

DIA

DIB

36 Kb
Memory

Array

Port A

32

4

32

4

16

4

32

4

16
4

32

4

Port B

CASCADEOUTA

CASCADEINBCASCADEINA

Ports A and B are fully
independent.

Each port has its own
address, data in/out,
clock, and WR enable.

Both read/write are
synchronous.

Simultaneously writing to
the same address causes
data uncertainty.

44

Dual-Port Block RAM

Chapter 7: HDL Coding Techniques

Dual-Port Block RAM with Two Write Ports VHDL Coding Example
--
-- Dual-Port Block RAM with Two Write Ports
-- Correct Modelization with a Shared Variable
--
-- Download: http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_16b.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity rams_16b is
port(clka : in std_logic;

clkb : in std_logic;
ena : in std_logic;
enb : in std_logic;
wea : in std_logic;
web : in std_logic;
addra : in std_logic_vector(6 downto 0);
addrb : in std_logic_vector(6 downto 0);
dia : in std_logic_vector(15 downto 0);
dib : in std_logic_vector(15 downto 0);
doa : out std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0));

end rams_16b;

architecture syn of rams_16b is
type ram_type is array (127 downto 0) of std_logic_vector(15 downto 0);
shared variable RAM : ram_type;

begin

process (CLKA)
begin

if CLKA’event and CLKA = ’1’ then
if ENA = ’1’ then

DOA <= RAM(conv_integer(ADDRA));
if WEA = ’1’ then

RAM(conv_integer(ADDRA)) := DIA;
end if;

end if;
end if;

end process;

process (CLKB)
begin

if CLKB’event and CLKB = ’1’ then
if ENB = ’1’ then

DOB <= RAM(conv_integer(ADDRB));
if WEB = ’1’ then

RAM(conv_integer(ADDRB)) := DIB;
end if;

end if;
end if;

end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
250 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback

45

Dual-Port Block RAM

Chapter 7: HDL Coding Techniques

Dual-Port Block RAM with Two Write Ports VHDL Coding Example
--
-- Dual-Port Block RAM with Two Write Ports
-- Correct Modelization with a Shared Variable
--
-- Download: http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/rams/rams_16b.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity rams_16b is
port(clka : in std_logic;

clkb : in std_logic;
ena : in std_logic;
enb : in std_logic;
wea : in std_logic;
web : in std_logic;
addra : in std_logic_vector(6 downto 0);
addrb : in std_logic_vector(6 downto 0);
dia : in std_logic_vector(15 downto 0);
dib : in std_logic_vector(15 downto 0);
doa : out std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0));

end rams_16b;

architecture syn of rams_16b is
type ram_type is array (127 downto 0) of std_logic_vector(15 downto 0);
shared variable RAM : ram_type;

begin

process (CLKA)
begin

if CLKA’event and CLKA = ’1’ then
if ENA = ’1’ then

DOA <= RAM(conv_integer(ADDRA));
if WEA = ’1’ then

RAM(conv_integer(ADDRA)) := DIA;
end if;

end if;
end if;

end process;

process (CLKB)
begin

if CLKB’event and CLKB = ’1’ then
if ENB = ’1’ then

DOB <= RAM(conv_integer(ADDRB));
if WEB = ’1’ then

RAM(conv_integer(ADDRB)) := DIB;
end if;

end if;
end if;

end process;

end syn;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
250 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback

Port A

Port B

46

Simple Dual-Port BRAM

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity sync_rw_port_ram is

generic(ADDR_WIDTH : integer := 10;

DATA_WIDTH : integer := 12);

port (clk : in std_logic;
we : in std_logic;
addr_w, addr_r : in

std_logic_vector(ADDR_WIDTH-1 downto 0);

din : in std_logic_vector(DATA_WIDTH-1 downto 0);

dout : out std_logic_vector(DATA_WIDTH-1 downto 0);
end sync_rw_port_ram;

47

Simple Dual-Port BRAM
architecture beh_arch of sync_rw_port_ram is

type ram_type i s array (0 to 2** ADDR_WIDTH -1) of

std_logic_vector(DATA_WIDTH-1 downto 0);

signal ram : ram_type;

begin

process(clk)

begin
if (clk’event and clk = ’1’) then

if (we = ’1’) then

ram(to_integer(unsigned(addr_w))) <= din;

end if;

dout <= ram(to_integer(unsigned(addr_r)));

end if;

end process;

end beh_arch ;

48

Single-Port RAM

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity sync_rw_port_ram is

generic(ADDR_WIDTH : integer := 10;

DATA_WIDTH : integer := 12);

port (clk : in std_logic;
we : in std_logic;
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);

din : in std_logic_vector(DATA_WIDTH-1 downto 0);

dout : out std_logic_vector(DATA_WIDTH-1 downto 0);
end sync_rw_port_ram;

49

Single-Port BRAM
architecture beh_arch of sync_rw_port_ram is

type ram_type i s array (0 to 2** ADDR_WIDTH -1) of

std_logic_vector(DATA_WIDTH-1 downto 0);

signal ram : ram_type;

begin

process(clk)

begin
if (clk’event and clk = ’1’) then

if (we = ’1’) then

ram(to_integer(unsigned(addr))) <= din;

end if;

dout <= ram(to_integer(unsigned(addr)));

end if;

end process;

end beh_arch ;

50

Design Example - FIFO
FIFO BUFFER 153

Figure 7.2 Conceptual diagram of a FIFO buffer.

... array (2** ADDR_WIDTH -1 downto 0) of ...

A ROM is synthesized as a combinational circuit with the logic cells. The code
can be considered as another form of a selected signal assignment or case statement.
This type of ROM is feasible only for a small table. For larger amount of data,
the synchronous ROM template discussed in Section 7.4.5 should be used to take
advantage of BRAMs.

7.3 FIFO BUFFER

A FIFO (first-in-first-out) buffer is an “elastic” storage between two subsystems, as
shown in the conceptual diagram of Figure 7.2. It can be constructed by “wrapping”
a regular memory component with a special controller. We use the register file as
the storage and develop a FIFO buffer in this section. More sophisticated BRAM-
based implementation is discussed in Section 7.4.6.

7.3.1 FIFO read configuration

A FIFO buffer has two control signals, wr and rd, for write and read operations.
When wr is asserted, the input data is written into the tail (i.e., end) of the buffer.
When rd is asserted, the data is retrieved or removed from the head (i.e., front) of
the buffer. The date retrieval is based on the order the data written to the buffer
and thus is done in a first-in-first-out basis.

One subtle aspect of a FIFO buffer is its “read configuration,” which specifies
how the data is retrieved and removed from the buffer. In the FWFT (first word fall
through) configuration, the current data (i.e., the head of the buffer) is available
automatically in the read data port without the assertion of any control signal.
When a data word is written to an empty FIFO buffer, it “falls through” to the
read data port immediately. The read signal, rd, actually functions as a “removal”
signal. When it is asserted, the current head data is deleted from the buffer and
the following data item in buffer becomes available in the next clock cycle.

In the “standard”configuration, the read signal is used to retrieve the head data.
When a data word is written to an empty FIFO buffer, the FIFO’s read port remains
unchanged. The rd signal functions as a “request” signal. When it is asserted, the
current head data is retrieved and becomes available in the next clock cycle. An
FWFT FIFO buffer can be converted to a standard FIFO buffer by inserting an
extra register, as shown in Figure 7.3.

We use the FWFT FIFO buffer in this book.

Chu, Pong P.. FPGA Prototyping by VHDL Examples : Xilinx MicroBlaze MCS SoC, John Wiley & Sons, Incorporated, 2017. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/usf/detail.action?docID=5106967.
Created from usf on 2018-05-10 20:13:47.

C
op

yr
ig

ht
 ©

 2
01

7.
 J

oh
n

W
ile

y
&

So
ns

, I
nc

or
po

ra
te

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

51

FIFO Design
using a
circular buffer

FIFO BUFFER 155

Figure 7.4 FIFO buffer based on a circular queue.

Chu, Pong P.. FPGA Prototyping by VHDL Examples : Xilinx MicroBlaze MCS SoC, John Wiley & Sons, Incorporated, 2017. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/usf/detail.action?docID=5106967.
Created from usf on 2018-05-10 20:13:47.

C
op

yr
ig

ht
 ©

 2
01

7.
 J

oh
n

W
ile

y
&

So
ns

, I
nc

or
po

ra
te

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

