
CDA 4253/CIS 6930 FPGA System Design
Modeling of Combinational Circuits

Hao Zheng
Dept of Comp Sci & Eng

USF

2

Reading

➜ P. Chu, FPGA Prototyping by VHDL Examples
➺Chapter 3, RT-level combinational circuit
➺Sections 3.1 - 3.2, 3.5 - 3.7.

➜XST User Guide for Virtex-6, Spartan-6, and 7
Series Devices
➺Chapter 3 and 7

3

VHDL Model Template: Recap
library ieee;

use ieee.std_logic_1164.all;

entity entity_name is

port declarations

end [entity] entity_name;

ARCHITECTURE architecture_name OF entity_name IS

Signal & component declarations

BEGIN

Concurrent statements

END [ARCHITECTURE] architecture_name;

4

➜Simple concurrent signal assignment
➺ z <= a xor b

➜Conditional signal assignment (when-else)
➜selected concurrent signal assignment (with-

select-when)
➜Process statements

➺To be covered later

Concurrent Statements

5

VHDL Modeling Styles

Components and
interconnects

structural

VHDL Descriptions

dataflow

Concurrent
statements

behavioral

• Registers
• State machines
• Instruction decoders

Sequential statements

Subset most suitable for synthesis

• Testbenches

6

Combinational Circuit Building Blocks

7

Fixed Shifters & Rotators

8

Fixed Logical Shift Right in VHDL

A(3) A(2) A(1) A(0)

�0� A(3) A(2) A(1)

A

C

4

4

A

C
A srl 1

SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL C : STD_LOGIC_VECTOR(3 DOWNTO 0);

srl: logic shift right C <= A srl 1;

C <= ‘0’ & A(3 downto 1);

9

Fixed Arithmetic Shift Right in VHDL

A(3) A(2) A(1) A(0)

A(3) A(2) A(1)

A

C <= A sra 1;

c <= A(3) & A(3 downto 1);

C

4

4

A

C
A sra 1

A(3)

SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL C : STD_LOGIC_VECTOR(3 DOWNTO 0);

sra: arithmetic shift left

10

Fixed Rotation in VHDL

A(3) A(2) A(1) A(0)

A(2) A(1) A(0) A(3)

A
4

4

A

C
A rol 1

SIGNAL A : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL C : STD_LOGIC_VECTOR(3 DOWNTO 0);

rol: rotation to left C <= A rol 1

C

11

Logic Gates

12

x 1
x 2

x n

x 1 x 2 … x n + + +
x 1
x 2

x 1 x 2 +

x 1
x 2

x n

x 1
x 2

x 1 x 2 � x 1 x 2 … x n � � �

(a) AND gates

(b) OR gates

x x

(c) NOT gate

Basic Gates – AND, OR, NOT

13

x
1

x
2

x
n

x
1

x
2

… x
n

+ + +
x

1

x
2

x
1

x
2

+

x
1

x
2

x
n

x
1

x
2

x
1

x
2

× x
1

x
2

… x
n

× × ×

(a) NAND gates

(b) NOR gates

Basic Gates – NAND, NOR

…

…

14

(b) Graphical symbol(a) Truth table

0
0
1
1

0
1
0
1

0
1
1
0

x 1 x 2

x 1

x 2

f x 1 x 2 Å =

f x 1 x 2 Å =

(c) Sum-of-products implementation

f x 1 x 2 Å =

x 1
x 2

Basic Gates – XOR

15

(b) Graphical symbol(a) Truth table

0
0
1
1

0
1
0
1

1
0
0
1

x 1 x 2

x 1

x 2

f x 1 x 2 Å =

f x 1 x 2 Å =

(c) Sum-of-products implementation

f x 1 x 2 Å =

x 1
x 2

x 1 x 2 = .

Basic Gates – XNOR

16

1-Bit Full Adder

x
y

cin
s

cout

17

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY fa1b IS
PORT(x : IN STD_LOGIC ;

y : IN STD_LOGIC ;
cin : IN STD_LOGIC ;
s : OUT STD_LOGIC ;

cout : OUT STD_LOGIC) ;
END fa1b;

1-Bit Full Adder

18

ARCHITECTURE dataflow OF fa1b IS
BEGIN

s <= x XOR y XOR cin ;
cout <= (x AND y) OR (cin AND x)

OR (cin AND y) ;
END dataflow ;

1-Bit Full Adder

x
y

cin
s

cout

19

Logic Operators

• Logic operators

• Logic operators precedence

and or nand nor xor not xnor

not

and or nand nor xor xnor

Highest

Lowest

20

Wanted: y = ab + cd
Incorrect

y <= a and b or c and d;
equivalent to

y <= ((a and b) or c) and d;
equivalent to

y = (ab + c)d

Correct
y <= (a and b) or (c and d);

No Implied Precedence

21

Modeling Routing Structures
with

Conditional Concurrent Signal Assignment
(when-else)

22

2-to-1 Multiplexer

(a) Graphical symbol (b) Truth table

fsel

f

sel

w0 0

1w1

0

1

w0
w1

23

2-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2to1 IS
PORT(w0, w1, sel : IN STD_LOGIC ;

f : OUT STD_LOGIC) ;
END mux2to1 ;

ARCHITECTURE dataflow OF mux2to1 IS
BEGIN

f <= w0 WHEN sel = '0' ELSE
w1;

END dataflow ;

24

Conditional Concurrent Signal Assignment

➜Branches are evaluated one by one from top to
bottom.

➜Induces priority among branches

target_signal <= value1 when condition1 else

value2 when condition2 else

. . .

valueN+1 when conditionN+1 else

valueN;

25

Cascade of Multiplexers

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux_cascade IS
PORT (w1, w2, w3 : IN STD_LOGIC ;

s1, s2 : IN STD_LOGIC ;
f : OUT STD_LOGIC) ;

END mux_cascade ;

ARCHITECTURE dataflow OF mux_cascade IS
BEGIN

f <= w1 WHEN s1 =�1' ELSE
w2 WHEN s2 =�1� ELSE
w3;

END dataflow ;

26

Cascade of Multiplexers

0

1

0

1 y

Notice the priority of selection.

w3

w2

w1

s1s2

27

.…Value N

Value N-1

Condition N-1

Condition 2
Condition 1

Value 2
Value 1

Target Signal

…
0
1

0
1

0
1

Conditional Concurrent Signal Assignment

target_signal <= value1 when condition1 else

value2 when condition2 else

. . .

valueN+1 when conditionN+1 else

valueN;

28

More Operators

• Relational operators

• Logic and relational operators precedence

= /= < <= > >=

not

= /= < <= > >=

and or nand nor xor xnor

Highest

Lowest

29

Precedence of Logic and Relational
Operators
Comparison a = bc
Incorrect

… when a = b and c else …
equivalent to

… when (a = b) and c else …

Correct
… when a = (b and c) else …

30

Modeling Routing Structures
with

Selected Concurrent Signal Assignment
(with-select-when)

31

f

s
1

w
0

w
1

00

01

(b) Truth table

w
0

w
1

s
0

w
2

w
3

10

11

0

0

1

1

1

0

1

f s
1

0

s
0

w
2

w
3

(a) Graphic symbol

No priority, and choices are disjoint.

4-to-1 Multiplexer

32

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4to1 IS
PORT(w0, w1, w2, w3 : IN STD_LOGIC ;

s : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
f : OUT STD_LOGIC) ;

END mux4to1 ;

ARCHITECTURE dataflow OF mux4to1 IS
BEGIN

WITH s SELECT
f <= w0 WHEN "00",

w1 WHEN "01",
w2 WHEN "10",
w3 WHEN OTHERS;

END dataflow;

A 4-to-1 Multiplexer

default condition

33

Selected Concurrent Signal Assignment

with choice_expression select
target <= expression1 when choices_1,

expression2 when choices_2,
. . .

expressionN when choices_N;

All choices are mutually exclusive
and

cover all values of choice_expression.

34

Selected Concurrent Signal Assignment

with choice_expression select
target <= expression1 when choices_1,

expression2 when choices_2,
. . .

expressionN when choices_N;

choices_1

choices_2

choices_N

expression1

target_signal

choice expression

expression2

expressionN

35

Formats of Choices

• when Expr

• when Expr_1 | | Expr_N
• this branch is taken if any of Expr_x matches

choice_expression

• when others

36

Formats of Choices - Example

with sel select

y <= a when "000",

c when "001" | "111",

d when others;

37

Decoders

38

2-to-4 Decoder

0

0

1

1

1

0

1

y
3

w
1

0

w
0

x x

1

1

0

1

1

En

0

0

1

0

0

y
2

0

1

0

0

0

y
1

1

0

0

0

0

y
0

0

0

0

1

0

w
1

En

y
3

w
0

y
2

y
1

y
0

(a) Truth table (b) Graphical
symbol

39

-- LIBRARY not shown
ENTITY dec2to4 IS

PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
En : IN STD_LOGIC ;
y : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)) ;

END dec2to4 ;

ARCHITECTURE dataflow OF dec2to4 IS
SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0) ;

BEGIN

Enw <= En & w ;
WITH Enw SELECT

y <= �0001" WHEN "100",
"0010" WHEN "101",
"0100" WHEN "110",
�1000" WHEN "111",
"0000" WHEN OTHERS ;

END dataflow ;

VHDL Code for a 2-to-4 Decoder

40

Encoders

41

Priority Encoder

w 0

w 3

y 0

y 1

x
0
0
1

0
1
0

w0 y1

x

y0

1 1

0
1

1

1
1

z

1
x
x

0

x

w1

0
1
x

0

x

w2

0
0
1

0

x

w3

0
0
0

0

1

z

w 1

w 2

42

VHDL code for a Priority Encoder
-- library not shown
ENTITY priority IS

PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
z : OUT STD_LOGIC) ;

END priority ;

ARCHITECTURE dataflow OF priority IS
BEGIN

y <= "11" when w(3) = '1’ else
"10" when w(2) = '1' else
"01" when w(1) = '1' else
"00" when others;

z <= '0' when w = "0000" else
'1' when others;

END dataflow ;

43

Adders

44

16-bit Unsigned Adder

16 16

X Y

16

CinCout
S
+

S = X + Y

45

Operations on Unsigned Numbers
For operations on unsigned numbers

USE
ieee.numeric_std.all

and
signals of the type UNSIGNED

and
conversion functions std_logic_vector(), unsigned()

OR USE
ieee.std_logic_unsigned.all

and
signals of the type STD_LOGIC_VECTOR

46

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

USE ieee.std_logic_unsigned.all;--non-IEEE standard

ENTITY adder16 IS
PORT(Cin : IN STD_LOGIC ;

X : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
Y : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;
Cout : OUT STD_LOGIC) ;

END adder16 ;

ARCHITECTURE dataflow OF adder16 IS
SIGNAL Sum : STD_LOGIC_VECTOR(16 DOWNTO 0) ;

BEGIN

Sum <= ('0' & X) + Y + Cin ;
S <= Sum(15 DOWNTO 0) ;
Cout <= Sum(16) ;

END dataflow ;

16-bit Unsigned Adder

47

Addition of Unsigned Numbers (1)

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

USE ieee.numeric_std.all; -- IEEE standard

ENTITY adder16 IS
PORT(Cin : IN STD_LOGIC ;

X : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
Y : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;
Cout : OUT STD_LOGIC) ;

END adder16 ;

48

Addition of Unsigned Numbers (2)

ARCHITECTURE dataflow OF adder16 IS
SIGNAL Xu, Yu : UNSIGNED(15 DOWNTO 0);
SIGNAL Su : UNSIGNED(16 DOWNTO 0) ;

BEGIN
Xu <= unsigned(X);
Yu <= unsigned(Y);
Su <= ('0' & Xu) + Yu + unsigned(�0� & Cin)

;
S <= std_logic_vector(Su(15 DOWNTO 0)) ;
Cout <= Su(16) ;

END dataflow ;

Signed and unsigned are arrays of std_logic.

49

Operations on Signed Numbers

For operations on signed numbers

• Either use
ieee.numeric_std.all,
signals of the type SIGNED, and
conversion std_logic_vector(), signed()

• Or use
ieee.std_logic_signed.all, and
signal type STD_LOGIC_VECTOR

50

Signed/Unsigned Types in numeric_std

➜Behave exactly like
std_logic_vector

➜They determine whether a given vector should be
treated as a signed or unsigned number.

➜Prefer to use
ieee.numeric_std.all;

➜Use either numeric_std or std_logic_unsigned (or
signed).
➺Do NOT mix them together.

51

Multipliers

52

Unsigned vs. Signed Multiplication

1111
1111x

11100001

15
15x

225

1111
1111x

00000001

-1
-1x

1

Unsigned Signed

In Xilinx, a multiplier can be implemented either in a
DSP or CLB

53

8x8-bit Unsigned Multiplier

mult8b

a b

c

LIBRARY ieee;
USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

entity mult8b is
port(…);

end mult8b;

architecture arch of mult8b is
begin

c <= a * b;
end arch;

54

8x8-bit Signed Multiplier

mult8b

a b

c

LIBRARY ieee;
USE ieee.std_logic_1164.all;

USE ieee.std_logic_signed.all;

entity mult8b is
port(…);

end mult8b;

architecture arch of mult8b is
begin

c <= a * b;
end arch;

55

Signed/Unsigned Multiplication
library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all ;

entity multiply is
port(a : in STD_LOGIC_VECTOR(7 downto 0);

b : in STD_LOGIC_VECTOR(7 downto 0);
cu : out STD_LOGIC_VECTOR(15 downto 0);
cs : out STD_LOGIC_VECTOR(15 downto 0));

end multiply;

architecture dataflow of multiply is
begin
-- signed multiplication

cs <= std_logic_vector(signed(a)*signed(b));
-- unsigned multiplication

cu <=
std_logic_vector(unsigned(a)*unsigned(b));

end dataflow;

56

Multiplication with Constants

➜If either A or B in A * B is a constant, more
efficient implementation with shifts and
additions.

A * 9
can be implemented as

A << 3 + A

57

Operators in numeric_std Package

RTL Hardware Design
by P. Chu

Chapter 3 47

Overloaded operators in
IEEE numeric_std package

https://standards.ieee.org/downloads/1076/1076.2-1996/numeric_std.vhdl

58

Parameterized Models

59

Design Reuse

➜How to design for the 32-bit problem below?

➜Create a new 32-bit adder
➺waste of effort

➜Reuse previously designed adder
➺but it is 16-bit

O = A + B + C

60

CONSTANTS AND GENERICS 43

3.5.2 Generics

VHDL provides a construct, known as a generic, to pass information into an entity
and component. Since a generic cannot be modified inside the architecture, it func-
tions somewhat like a constant. A generic is declared inside an entity declaration,
just before the port declaration:

entity entity_name i s
generic(

generic_name: data_type := default_value;
generic_name: data_type := default_value;
. . .
generic_name: data_type := default_value

)
port(

port_name: mode data_type;
. . .

);
end entity_name;

For example, the previous adder code can be modified to use the adder width as a
generic, as shown in Listing 3.11.

Listing 3.11 Adder using a generic

l ibrary ieee;
use ieee.std_logic_1164. a l l ;
use ieee.numeric_std. a l l ;
entity gen_add_w_carry i s

generic(N : integer := 4);
port(

a, b : in std_logic_vector(N - 1 downto 0);
cout : out std_logic;
sum : out std_logic_vector(N - 1 downto 0)

);
end gen_add_w_carry;

architecture arch of gen_add_w_carry i s
signal a_ext , b_ext , sum_ext : unsigned(N downto 0);

begin
a_ext <= unsigned(’0’ & a);
b_ext <= unsigned(’0’ & b);
sum_ext <= a_ext + b_ext;
sum <= std_logic_vector(sum_ext(N - 1 downto 0));
cout <= sum_ext(N);

end arch

The N generic is declared in line 5 with a default value of 4. After N is declared, it
can be used in the port declaration and architecture body, just like a constant.

If the adder is later used as a component in other code, we can assign the desired
value to the generic in component instantiation. This is known as generic mapping .
The default value will be used if generic mapping is omitted. Use of the generic in
component instantiation is shown below.

s ignal a4, b4, sum4 : unsigned (3 downto 0);
s ignal a8, b8, sum8 : unsigned (7 downto 0);
s ignal a16 , b16 , sum16: unsigned (15 downto 0);
s ignal c4, c8, c16 : std_logic;

Chu, Pong P.. FPGA Prototyping by VHDL Examples : Xilinx MicroBlaze MCS SoC, John Wiley & Sons, Incorporated, 2017. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/usf/detail.action?docID=5106967.
Created from usf on 2018-05-09 06:53:33.

C
op

yr
ig

ht
 ©

 2
01

7.
 J

oh
n

W
ile

y
&

So
ns

, I
nc

or
po

ra
te

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

61

44 RT-LEVEL COMBINATIONAL CIRCUIT

. . .
−− i n s t a n t i a t e 8− b i t adder
adder_8_unit: work.gen_add_w_carry(arch)

generic map(N=>8)
port map(a=>a8, b=>b8 , cout=>c8 , sum=>sum8));

−− i n s t a n t i a t e 16− b i t adder
adder_16_unit: work.gen_add_w_carry(arch)

generic map(N=>16)
port map(a=>a16 , b=>b16 , cout=>c16 , sum=>sum16));

−− i n s t a n t i a t e 4− b i t adder
−− (g en e r i c mapping omit ted , d e f a u l t v a l u e 4 used)
adder_4_unit: work.gen_add_w_carry(arch)

port map(a=>a4, b=>b4 , cout=>c4 , sum=>sum4));

A generic provides a mechanism to create scalable code, in which the “width” of
a circuit can be adjusted to meet a specific need. This makes code more portable
and encourages design reuse.

3.6 REPLICATED STRUCTURE

Many digital circuits exhibit a well-patterned structure, such as a one-dimensional
cascading chain or a two-dimensional mesh, and can be implemented as a repetitive
composition of basic building blocks.

3.6.1 Loop statements

A replicated structure can be described by the VHDL for-generate and for-loop
statements. The former is a concurrent statement and the latter is a sequential
statement.

The simplified syntax of the for-generate statement is

gen_label:
for loop_index in loop_range generate

concurrent statement;
concurrent statement;
. . .

end generate;

The for-generate statement repeats the loop body of concurrent statements for
a fixed number of iterations. The loop range term specifies a range of values
between the left and right bounds. The range has to be static, which means that
it has to be determined before the time of execution (synthesis). It is normally
specified by the width parameters. The loop index term is used to keep track
of the iteration and takes a successive value from loop range in each iteration,
starting from the leftmost value. The index automatically takes the data type of
loop range’s element and does not need to be declared. The loop body contains a
collection of concurrent statements and represents a stage of the iterative circuit.
During synthesis, the loop is “unrolled” and flattened. The for-generate statement
is frequently used in conjunction with generics to create scalable and reusable codes.

The for-loop statement is similar to the for-generate statement but is a sequential
statement and can only be used within a process. The simplified syntax of the for-
loop statement is

Chu, Pong P.. FPGA Prototyping by VHDL Examples : Xilinx MicroBlaze MCS SoC, John Wiley & Sons, Incorporated, 2017. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/usf/detail.action?docID=5106967.
Created from usf on 2018-05-09 06:53:33.

C
op

yr
ig

ht
 ©

 2
01

7.
 J

oh
n

W
ile

y
&

So
ns

, I
nc

or
po

ra
te

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Instances of Generic Models

62

A Word on Generics
➜ Generics are typically integer values

➺ In this class, the entity inputs and outputs should be
std_logic or std_logic_vector.

➺But the generics should be integer.
➜ Generics are given a default value

➺GENERIC (N : INTEGER := 16) ;
➺This value can be overwritten when entity is instantiated as

a component
➜ Generics are very useful when instantiating an often-used

component
➺Need a 32-bit register in one place, and 16-bit register in

another
➺Can use the same generic code, just configure them

differently

63

Constants – Make Code More Readable

Syntax:

constant name : type := value;

Examples:
constant init_val : STD_LOGIC_VECTOR(3 downto 0) := "0100";

constant ANDA_EXT : STD_LOGIC_VECTOR(7 downto 0) := X"B4";

constant counter_width : INTEGER := 16;

constant buffer_address : INTEGER := x”FFFE”;

constant clk_period : TIME := 20 ns;

constant strobe_period : TIME := 333.333 ms;

64

Constants vs Generics

➜Constants:
➺Create symbolic names
➺Make code more readable
➺Declared in packages, entity, or architecture.
➺Cannot create generic designs: still need two design

entities for Adder_8b and Adder_32b.
➜Generics:

➺Can be passed through design hierarchy through
component instantiation

➺Used for creating generic designs: a single design
entity Adder for Adder_8b and Adder_32b.

65

Binary to BCD Conversion

66

for(i=0; i<8; i++) {
// add 3 to a column if it is >= 5

for each column

if (column >= 5)
column += 3;

// shift binary digits left 1

Hundred << 1;
Hundreds[0] = Tens[3];

Tens << 1;

Tens[0] = Ones[3];

Ones << 1;

Ones[0] = Binary[7];

Binary << 1;
}

Shift and Add-3 (Double-Dabble)

67

1. If the binary value in any of the BCD columns is 5 or
greater, add 3 to that value in that BCD column.

2. Shift the binary number left one bit.
3. If 8 shifts have taken place, the BCD number is in the

Hundreds, Tens, and Ones column. Terminate

4. Otherwise, go to 1.

Example:

Hundreds Tens Ones Binary

0000 0000 0000 11110011

Shift and Add-3 (Double-Dabble)

68

100’s 10’s 1’s Binary Operation
0000 0000 0000 10100010

Shift and Add-3 (Double-Dabble)

69

100’s 10’s 1’s Binary Operation
0000 0000 0000 10100010
0000 0000 0001 0100010 << 1

Shift and Add-3 (Double-Dabble)

70

100’s 10’s 1’s Binary Operation
0000 0000 0000 10100010
0000 0000 0001 0100010 << 1
0000 0000 0010 100010 << 1

Shift and Add-3 (Double-Dabble)

71

100’s 10’s 1’s Binary Operation
0000 0000 0000 10100010
0000 0000 0001 0100010 << 1
0000 0000 0010 100010 << 1
0000 0000 0101 00010 << 1
0000 0000 1000 00010 +3

Shift and Add-3 (Double-Dabble)

72

100’s 10’s 1’s Binary Operation
0000 0000 0000 10100010
0000 0000 0001 0100010 << 1
0000 0000 0010 100010 << 1
0000 0000 0101 00010 << 1
0000 0000 1000 00010 +3
0000 0001 0000 0010 << 1
0000 0010 0000 010 << 1
0000 0100 0000 10 << 1

Shift and Add-3 (Double-Dabble)

73

100’s 10’s 1’s Binary Operation
0000 0000 0000 10100010
0000 0000 0001 0100010 << 1
0000 0000 0010 100010 << 1
0000 0000 0101 00010 << 1
0000 0000 1000 00010 +3
0000 0001 0000 0010 << 1
0000 0010 0000 010 << 1
0000 0100 0000 10 << 1
0000 1000 0001 0 << 1
0000 1011 0001 0 +3

Shift and Add-3 (Double-Dabble)

74
Goto wiki for more information and VHDL implementation

Shift and Add-3 (Double-Dabble)

75

Summary

➜More concurrent statements for DF modeling
➺ describing routing structures

➜Modeling of basic combinational circuit blocks
➺ Adders, multipliers, muxes, encoder/decoder

➜ Generic design modeling
➺Using VHDL generics

76

Backup

77

Comparators

78

2-bit Number Comparator

A
AeqBA = B

2

2
B

79

4-bit Unsigned Number Comparator

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all ;

entity compare is
port(A, B : in STD_LOGIC_VECTOR(1 downto 0);

AeqB : out STD_LOGIC);
end compare ;

architecture dataflow of compare is
begin

AeqB <= '1' when A = B else

'0’;
end dataflow ;

80

4-bit Unsigned Number Comparator
library ieee;
use ieee.std_logic_1164.all;

entity compare is
port(A, B : in STD_LOGIC_VECTOR(1 downto 0);

AeqB : out STD_LOGIC);
end compare ;
-- Create a different model?
architecture dataflow of compare is
begin

end dataflow ;

81

4-bit Signed Number Comparator

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

entity compare is
port(A, B : in STD_LOGIC_VECTOR(1 downto 0);

AeqB : out STD_LOGIC);
end compare ;

architecture dataflow of compare is
begin

AeqB <= '1' when A = B else
'0’;

end dataflow ;

82

Hexadecimal to 7-Segment Display

83

7-Segment Display
Basys3™ FPGA Board Reference Manual

Figure 17. An un-illuminated seven-segment display and nine illumination patterns corresponding to decimal digits.

The anodes of the seven LEDs forming each digit are tied together into one “common anode” circuit node, but the
LED cathodes remain separate, as shown in Fig. 18. The common anode signals are available as four “digit enable”
input signals to the 4-digit display. The cathodes of similar segments on all four displays are connected into seven
circuit nodes labeled CA through CG (for example, the four “D” cathodes from the four digits are grouped together
into a single circuit node called “CD”). These seven cathode signals are available as inputs to the 4-digit display.
This signal connection scheme creates a multiplexed display, where the cathode signals are common to all digits
but they can only illuminate the segments of the digit whose corresponding anode signal is asserted.

To illuminate a segment, the anode should be driven high while the cathode is driven low. However, since the
Basys3 uses transistors to drive enough current into the common anode point, the anode enables are inverted.
Therefore, both the AN0..3 and the CA..G/DP signals are driven low when active.

AF

E

D

C

B

G

Common anode

Individual cathodes

DP

AN3 AN2 AN1 AN0

CA CB CC CD CE CF CG DP

Four-digit Seven
Segment Display

Figure 18. Common anode circuit node.

A scanning display controller circuit can be used to show a four-digit number on this display. This circuit drives the
anode signals and corresponding cathode patterns of each digit in a repeating, continuous succession at an update
rate that is faster than the human eye can detect. Each digit is illuminated just one-fourth of the time, but because
the eye cannot perceive the darkening of a digit before it is illuminated again, the digit appears continuously
illuminated. If the update, or “refresh”, rate is slowed to around 45Hz, a flicker can be noticed in the display.

For each of the four digits to appear bright and continuously illuminated, all four digits should be driven once every
1 to 16ms, for a refresh frequency of about 1 KHz to 60Hz. For example, in a 62.5Hz refresh scheme, the entire
display would be refreshed once every 16ms, and each digit would be illuminated for 1/4 of the refresh cycle, or
4ms. The controller must drive the cathodes low with the correct pattern when the corresponding anode signal is
driven high. To illustrate the process, if AN0 is asserted while CB and CC are asserted, then a “1” will be displayed

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 19

A

F

E
D

C

B
G

dp

To illuminate a segment, the corresponding control signal
should be driven low.

84

7-Segment Display
Basys3™ FPGA Board Reference Manual

Figure 17. An un-illuminated seven-segment display and nine illumination patterns corresponding to decimal digits.

The anodes of the seven LEDs forming each digit are tied together into one “common anode” circuit node, but the
LED cathodes remain separate, as shown in Fig. 18. The common anode signals are available as four “digit enable”
input signals to the 4-digit display. The cathodes of similar segments on all four displays are connected into seven
circuit nodes labeled CA through CG (for example, the four “D” cathodes from the four digits are grouped together
into a single circuit node called “CD”). These seven cathode signals are available as inputs to the 4-digit display.
This signal connection scheme creates a multiplexed display, where the cathode signals are common to all digits
but they can only illuminate the segments of the digit whose corresponding anode signal is asserted.

To illuminate a segment, the anode should be driven high while the cathode is driven low. However, since the
Basys3 uses transistors to drive enough current into the common anode point, the anode enables are inverted.
Therefore, both the AN0..3 and the CA..G/DP signals are driven low when active.

AF

E

D

C

B

G

Common anode

Individual cathodes

DP

AN3 AN2 AN1 AN0

CA CB CC CD CE CF CG DP

Four-digit Seven
Segment Display

Figure 18. Common anode circuit node.

A scanning display controller circuit can be used to show a four-digit number on this display. This circuit drives the
anode signals and corresponding cathode patterns of each digit in a repeating, continuous succession at an update
rate that is faster than the human eye can detect. Each digit is illuminated just one-fourth of the time, but because
the eye cannot perceive the darkening of a digit before it is illuminated again, the digit appears continuously
illuminated. If the update, or “refresh”, rate is slowed to around 45Hz, a flicker can be noticed in the display.

For each of the four digits to appear bright and continuously illuminated, all four digits should be driven once every
1 to 16ms, for a refresh frequency of about 1 KHz to 60Hz. For example, in a 62.5Hz refresh scheme, the entire
display would be refreshed once every 16ms, and each digit would be illuminated for 1/4 of the refresh cycle, or
4ms. The controller must drive the cathodes low with the correct pattern when the corresponding anode signal is
driven high. To illustrate the process, if AN0 is asserted while CB and CC are asserted, then a “1” will be displayed

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 19

A

F

E
D

C

B
G

dp

To illuminate a segment, the corresponding control signal
should be driven low – A = ‘0,’ ..., F = ‘0’, G = ‘1’

85

7-Segment Display
Basys3™ FPGA Board Reference Manual

Figure 17. An un-illuminated seven-segment display and nine illumination patterns corresponding to decimal digits.

The anodes of the seven LEDs forming each digit are tied together into one “common anode” circuit node, but the
LED cathodes remain separate, as shown in Fig. 18. The common anode signals are available as four “digit enable”
input signals to the 4-digit display. The cathodes of similar segments on all four displays are connected into seven
circuit nodes labeled CA through CG (for example, the four “D” cathodes from the four digits are grouped together
into a single circuit node called “CD”). These seven cathode signals are available as inputs to the 4-digit display.
This signal connection scheme creates a multiplexed display, where the cathode signals are common to all digits
but they can only illuminate the segments of the digit whose corresponding anode signal is asserted.

To illuminate a segment, the anode should be driven high while the cathode is driven low. However, since the
Basys3 uses transistors to drive enough current into the common anode point, the anode enables are inverted.
Therefore, both the AN0..3 and the CA..G/DP signals are driven low when active.

AF

E

D

C

B

G

Common anode

Individual cathodes

DP

AN3 AN2 AN1 AN0

CA CB CC CD CE CF CG DP

Four-digit Seven
Segment Display

Figure 18. Common anode circuit node.

A scanning display controller circuit can be used to show a four-digit number on this display. This circuit drives the
anode signals and corresponding cathode patterns of each digit in a repeating, continuous succession at an update
rate that is faster than the human eye can detect. Each digit is illuminated just one-fourth of the time, but because
the eye cannot perceive the darkening of a digit before it is illuminated again, the digit appears continuously
illuminated. If the update, or “refresh”, rate is slowed to around 45Hz, a flicker can be noticed in the display.

For each of the four digits to appear bright and continuously illuminated, all four digits should be driven once every
1 to 16ms, for a refresh frequency of about 1 KHz to 60Hz. For example, in a 62.5Hz refresh scheme, the entire
display would be refreshed once every 16ms, and each digit would be illuminated for 1/4 of the refresh cycle, or
4ms. The controller must drive the cathodes low with the correct pattern when the corresponding anode signal is
driven high. To illustrate the process, if AN0 is asserted while CB and CC are asserted, then a “1” will be displayed

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 19

A

F

E
D

C

B
G

dp

To illuminate a segment, the corresponding control signal
should be driven low – A = ‘0,’ ..., E = ‘1’, F = ‘0’, G = ‘0’

86

Hex to 7-Segment
Hex Input 7-Segment Control

GFE...BCA

0000 (0) 1000000
0001 (1) 1111001
0010 (2) 0100100
0011 (3) 0110000
0100 (4) 0011001
0101 (5) 0010010
0110 (6) 0000010
0111 (7) 1111000
1000 (8) 0000000
1001 (9) 0010000
1010 (A) 0001000

87

7-Segment Display

Basys3™ FPGA Board Reference Manual

Figure 17. An un-illuminated seven-segment display and nine illumination patterns corresponding to decimal digits.

The anodes of the seven LEDs forming each digit are tied together into one “common anode” circuit node, but the
LED cathodes remain separate, as shown in Fig. 18. The common anode signals are available as four “digit enable”
input signals to the 4-digit display. The cathodes of similar segments on all four displays are connected into seven
circuit nodes labeled CA through CG (for example, the four “D” cathodes from the four digits are grouped together
into a single circuit node called “CD”). These seven cathode signals are available as inputs to the 4-digit display.
This signal connection scheme creates a multiplexed display, where the cathode signals are common to all digits
but they can only illuminate the segments of the digit whose corresponding anode signal is asserted.

To illuminate a segment, the anode should be driven high while the cathode is driven low. However, since the
Basys3 uses transistors to drive enough current into the common anode point, the anode enables are inverted.
Therefore, both the AN0..3 and the CA..G/DP signals are driven low when active.

AF

E

D

C

B

G

Common anode

Individual cathodes

DP

AN3 AN2 AN1 AN0

CA CB CC CD CE CF CG DP

Four-digit Seven
Segment Display

Figure 18. Common anode circuit node.

A scanning display controller circuit can be used to show a four-digit number on this display. This circuit drives the
anode signals and corresponding cathode patterns of each digit in a repeating, continuous succession at an update
rate that is faster than the human eye can detect. Each digit is illuminated just one-fourth of the time, but because
the eye cannot perceive the darkening of a digit before it is illuminated again, the digit appears continuously
illuminated. If the update, or “refresh”, rate is slowed to around 45Hz, a flicker can be noticed in the display.

For each of the four digits to appear bright and continuously illuminated, all four digits should be driven once every
1 to 16ms, for a refresh frequency of about 1 KHz to 60Hz. For example, in a 62.5Hz refresh scheme, the entire
display would be refreshed once every 16ms, and each digit would be illuminated for 1/4 of the refresh cycle, or
4ms. The controller must drive the cathodes low with the correct pattern when the corresponding anode signal is
driven high. To illustrate the process, if AN0 is asserted while CB and CC are asserted, then a “1” will be displayed

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 19

• All four displays share common segment control signals.
• Only one display can be illuminated at a time when signal
ANx is driven high.

A B C D E F G DP

88

7-Segment Display Controller

disp_mux

8

8

8

8

in0

in2

in2

in3

sseg

an

8

4

hex2sseg
4

hex2sseg
4

hex2sseg
4

hex2sseg
4

clk

89

1. Right shift bcd1, with the LSB shifting to the MSB
of bcd0.

2. Right shift bcd0, with the LSB shifting to the MSB
of bin.

3. If bcd0 is now > 4, subtract 3
4. repeat steps 1-3, 7 times.

BCD to Binary Conversion

90

BCD to Binary Conversion

91

8-bit Variable Rotator Left

8

8

3

A

B

C

A <<< B

92

Tri-State Buffers

93

(b) Equivalent circuit

(c) Truth table

x f

e

(a) A tri-state buffer

0
0
1
1

0
1
0
1

Z
Z
0
1

f e x

x f

e = 0

e = 1
x f

Tri-State Buffers

94

x f

e

(b)

x f

e

(a)

x f

e

(c)

x f

e

(d)

Four types of Tri-state Buffers

95

Tri-state Buffer – Example (1)

LIBRARY ieee;

USE ieee.std_logic_1164.all;

entity tri_state is

port(ena, input : IN STD_LOGIC;

output : OUT STD_LOGIC);

end tri_state;

architecture dataflow of tri_state is

begin

output <= input when (ena = ‘1’) else

‘Z’;
end dataflow;

96

ROM

97

3

16

Addr

C

8x16
ROM
Dout

ROM 8x16 example (1)

98

ROM 8x16 example (2)
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

entity rom is
port (Addr : in STD_LOGIC_VECTOR(2 downto 0);

Dout : out STD_LOGIC_VECTOR(15 downto 0));
end rom;

-- architecture body is defined on the next slide

99

architecture dataflow of rom is

signal temp: integer range 0 to 7;
type vector_array is array(0 to 7) of

std_logic_vector(15 downto 0);
constant memory : vector_array := (X”800A",

X"D459",
X"A870",
X"7853",
X"650D",
X"642F",
X"F742",
X"F548");

begin

temp <= to_integer(unsigned(Addr));
Dout <= memory(temp);

end dataflow;

ROM 8x16 example (3)

