
CDA 4253/CIS 6930 FPGA System Design
RTL Design Methodology

1

Hao Zheng
Comp S ci & Eng

Univ of South Florida

Structure of a Typical Digital Design

2

Datapath
(Execution

Unit)

Controller
(Control

Unit)

Data Inputs

Data Outputs

Control Inputs

Control Outputs

Control
Signals

Status
Signals

Hardware Design with RTL VHDL

3

units with such capability, the binding algorithm

must optimize this selection. Storage and functional-

unit binding also depend on connectivity binding,

which requires that each transfer from component

to component be bound to a connection unit

such as a bus or a multiplexer (see, for example,

http://www-labsticc.univ-ubs.fr/www-gaut/). Ideally,

high-level synthesis estimates the connectivity delay

and area as early as possible so that later HLS steps

can better optimize the design. An alternative

approach is to specify the complete architecture dur-

ing allocation so that initial floorplanning results can

be used during binding and scheduling (see http://

www.cecs.uci.edu/~nisc).

Generation

Once decisions have been made in the preceding

tasks of allocation, scheduling, and binding, the goal

of the RTL architecture generation step is to apply all

the design decisions made and generate an RTL

model of the synthesized design.

Architecture. The RTL architecture is implemented

by a set of register-transfer components. It usually

includes a controller and a data path (see Figure 2).

A data path consists of a set of storage elements

(such as registers, register files, and memories), a set

of functional units (such as ALUs, multipliers, shifters,

and other custom functions), and interconnect ele-

ments (such as tristate drivers, multiplexers, and

buses). All these register-transfer components can be

allocated in different quantities and types and con-

nected arbitrarily through buses. Each component

can take one or more clock cycles to execute, can

be pipelined, and can have input or output registers.

In addition, the entire data path and controller can

be pipelined in several stages.

Primary input and output ports of the design inter-

face with the external world to transfer both data and

control (used for interface protocol handshaking and

synchronization). Data inputs and outputs are con-

nected to the data path, and control inputs and out-

puts are connected to the controller. There are also

control signals from the controller to the data path

and status signals from the data path to the controller.

However, some architectures may not have all the

connectivity just described, and in general some of

the controller functions may be implemented as

part of the data path!!for example, a counter plus

other logic in the data path that generates control

signals.

The controller is a finite state machine that

orchestrates the flow of data in the data path by set-

ting the values of control signals (also called control

RF/Scratch pad

ALU MUL Memory

Bus 1
Bus 2

Bus 3

Next-
state
logic

Output
logic

State
register

(SR)

Control
signals

Data pathController

Control
inputs

Control
outputs

Status signals

...

...

Figure 2. Typ ical architecture.

11July/August 2009

[3B2-8] mdt2009040008.3d 17/7/09 13:24 Page 11

Authorized licensed use limited to: Columbia University. Downloaded on January 7, 2010 at 18:37 from IEEE Xplore. Restrictions apply.

Steps of the Design Process

4

1. Text description
2. Define interface
3. Describe the functionality using pseudo-code
4. Convert pseudo-code to FSM in state diagram

1. Define states and state transitions
2. Define datapath operations in each state.

5. Develop VHDL code to implement FSM
6. Develop testbench for simulation and debugging
7. Implementation and timing simulation

• Timing simulation can reveal more bugs than pre-
synthesis simulation

8. Test the implementation on FPGA boards

Min_Max_Average

5

Pseudocode Input: M[i]
Outputs: max, min, average

max = 0
min = MAX // the maximal constant
sum = 0
for i=0 to 31 do

d = M[i];
sum = sum + d
if (d < min) then

min = d
endif
if (d > max) then

max = d
endif

endfor
average = sum/32

6

Data M[i] are stored in
memory.

Results are stored in the
internal registers.

Circuit Interface

7

n

5

n

2

clk

reset

in_data

in_addr

write

start

done

out_data

out_addr
MIN_MAX_AVR

Interface Table
Port Width Meaning

clk 1 System clock

reset 1 System reset – clears internal registers

in_data n Input data bus

in_addr
5 Address of the internal memory where input data is stored

write 1 Synchronous write control signal – validity of in_data

start 1 Starts the computations

done 1 Asserted when all results are ready

out_data n Output data bus used to read results

out_addr
2 01 – reading minimum

10 – reading maximum
11 – reading average

8

Datapath

9

Input: M[i]
Output: max, min, average

max = 0
min = max
sum = 0
for i=0 to 31 do

d = M[i];
sum = sum + d
if (d < min) then

min = d
endif
if (d > max) then

max = d
endif

endfor
average = sum/32

Datapath

10

Input: M[i]
Output: max, min, average

max = 0
min = max
sum = 0
for i=0 to 31 do

d = M[i];
sum = sum + d
if (d < min) then

min = d
endif
if (d > max) then

max = d
endif

endfor
average = sum/32

+

d

sum

average

min max

d min d max

min max

< >

mux mux

/32

State Diagram for
Controller

11

Input: M[i]
Outputs: max, min, average

max = 0
min = MAX
sum = 0
for i=0 to 31 do

d = M[i];
sum = sum + d
if (d < min) then

min = d
endif
if (d > max) then

max = d
endif

endfor
average = sum/32

State Diagram for
Controller

12

Input: M[i]
Outputs: max, min, average

max = 0
min = MAX
sum = 0
for i=0 to 31 do

d = M[i];
sum = sum + d
if (d < min) then

min = d
endif
if (d > max) then

max = d
endif

endfor
average = sum/32

start=1 / rst<=1

i==32 / done<=1

i < 32 / i++

start=0/

done<=0

init

run

end

Output logic: in_addr <= i;
out_data <= ...

Sorting

13

14

Before
sorting

During Sorting After
sorting

Addr

0
1
2
3

3 3 2 2 1 1 1 1
2 2 3 3 3 3 2 2
4 4 4 4 4 4 4 3
1 1 1 1 2 2 3 4

i=0 i=0 i=0 i=1 i=1 i=2
j=1 j=2 j=3 j=2 j=3 j=3

Mi Mj

Legend: position of memory
indexed by i

position of memory
indexed by j

Sorting - Example

Data

15

Pseudocode

for i=0 to k-2 do
A = M[i]
for j=i+1 to k-1 do

B = M[j]
if A > B then

M[i] = B
M[j] = A
A = B

end if
end for

end for

K is a constant,
the number of
integers to be
sorted in memory

M denotes memory.

Memory address is
either i or j.

Sorting – Interface

16

Sort

clock

reset
din

N

done

addrk

we

start
Memory

N

dout

Sorting – Datapath

17

for i=0 to k-2 do
A = M[i]
for j=i+1 to k-1 do

B = M[j]
if A > B then

M[i] = B
M[j] = A
A = B

end if
end for

end for

• Registers to hold A, B,
• Memory addresses i and j
• Incrementor
• Comparator

18

for i=0 to k-2 do
A = M[i]
for j=i+1 to k-1 do

B = M[j]
if A > B then

M[i] = B
M[j] = A
A = B

end if
end for

end for

Ri
i

enable

j+1

mux

Rj

sel1

Sorting – Datapath

+1

Sorting – Datapath

19

for i=0 to k-2 do
A = M[i]
for j=i+1 to k-1 do

B = M[j]
if A > B then

M[i] = B
M[j] = A
A = B

end if
end for

end for

i j

mux

addr

B A

mux

dout

sel3
din

A B

RA RB

mux

B

sel2

Sorting – Datapath

20

for i=0 to k-2 do
A = M[i]
for j=i+1 to k-1 do

B = M[j]
if A > B then

M[i] = B
M[j] = A
A = B

end if
end for

end for

>

AgtB

A B

>

end_i

i k-2

>

end_j

j k-1

status signals

Sorting – Controller

21

for i=0 to k-2 do
A = M[i]
for j=i+1 to k-1 do

B = M[j]
if A > B then

M[i] = B
M[j] = A
A = B

end if
end for

end for

• Nested loops by two FSMs:
one for the outer loop
controls the one for the inner
loop.

• Reuse the FSM for the single
for loop in the previous
example.

Sorting – Controller

22

for i=0 to k-2 do
A = M[i]
for j=i+1 to k-1 do

B = M[j]
if A > B then

M[i] = B
M[j] = A
A = B

end if
end for

end for

start=1 /
rst<=1, i<=0

end_j=0 /…

end_i=0 /
we <= 0
sel2 <= 0
sel3 <= 0
...

start=0/

done<=0

init

outerend_i=1 /
done<=1end

end_j=1 /
i++;

inner
j++;

Behavioral Level Design

23

clk

registerinputs reg_next
reg

output

Combinational
Logic

FSMD

24

for i=0 to k-2 do
A = M[i]
for j=i+1 to k-1 do

B = M[j]
if A > B then

M[i] = B
M[j] = A
A = B

end if
end for

end for

FSMD

25

for i=0 to k-2 do
A = M[i]
for j=i+1 to k-1 do

B = M[j]
if A > B then

M[i] = B
M[j] = A
A = B

end if
end for

end for

i = 0;
while i < k-1 do

addr = i
A = M[addr]
j=i+1

while j < k do
addr = j
B = M[addr]
if A > B then

addr = i
M[addr] = B
addr = j
M[addr] = A
A = B

end if
j=j+1

end while
i = i+1;

end while

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

FSMD

26

i = 0;
while i < k-1 do

addr = i
A = M[addr]
j=i+1

while j < k do
addr = j
B = M[addr]
if A > B then

addr = i
M[addr] = B
addr = j
M[addr] = A
A = B

end if
j=j+1

end while
i = i+1;

end while

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

FSMD

27

i = 0;
while i < k-1 do

addr = i
A = M[addr]
j = i+1;
while j < k do

j = j+1
addr = j
B = M[addr]
if A > B then

addr = i
M[addr] = B
addr = j
M[addr] = A
A = B

end if
end while

end while

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Current
State

Next
State Cond Operations

1 2 start=‘1’ i <= 0

2 3 i < k-1 null

2 18 !(i<k-1) done <= ‘1’

3 6 true
addr <= i,
A <= M[addr];
j <= j+1;

6 7 j < k null

6 17 !(j<k) null

7 10 true j++; addr <= j; B <=
M[addr];

10 16 A > B addr <= i; M[addr] <= B;

10 16 !(A > B) null

16 6 true null

17 2 true null

...

FSMD

28

i = 0;
while i < k-1 do

addr = i
A = M[addr]
j = i+1
while j < k do

addr = j
B = M[addr]
if A > B then

addr = i
M[addr] = B
addr = j
M[addr] = A
A = B

end if
j = j+1

end while
i = i + 1

end while

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Curren
t State

Next
State Cond Operations

s0 s1 start=‘1’ i <= 0

s1 s2 i < k-1
addr <= i,
A <= M[addr];
j <= i+1;

s1 s0 !(i<k-1) done <= ‘1’

s2 s3 j < k addr <= j; B <= M[addr];

s2 s1 !(j<k) i <= i+1

s3 s2 A > B
addr <= i; M[addr] <= B;
addr <= j; M[addr] <= A;
A <= B; j <= j+1;

s3 s2 !(A > B) j <= j+1;

29

Optimization for Performance

Performance Definitions
• Throughput: the number of inputs processed per unit

time.
• Latency: the amount of time for an input to be

processed.
• Maximizing throughput and minimizing latency in

conflict.
• Both require timing optimization:
- Reduce delay of the critical path

30

31

Achieving High Throughput: Pipelining

• Divide data processing into stages
• Process different data inputs in different stages

simultaneously.

xpower = 1;

for (i = 0; i < 3; i++)

xpower = x * xpower;

process (clk) begin
if rising_edge(clk) then

if start=‘1’ then
cnt <= 3;
done <= ‘0’;

elsif cnt > 0 then
cnt <= cnt – 1;
xpower <= xpower * x;

elsif cnt = 0 then
done <= ‘1’;

end if;
end process;

Throughput: 1 data / 3 cycles =
0.33 data / cycle .
Latency: 3 cycles.
Critical path delay: 1 multiplier delay

32

Achieving High Throughput: Pipelining

xpower = 1;
for (i = 0; i < 3; i++)

xpower = x * xpower;

process (clk, rst) begin
if rising_edge(clk) then

if start=‘1’ then -- stage 1
x1 <= x;
xpower1 <= x;
done1 <= start;

end if;
-- stage 2
x2 <= x1;
xpower2 <= xpower1 * x1;
done2 <= done1;
-- stage 3
xpower <= xpower2 * x2;
done <= done2;

end if;
end process;

Throughput: 1 data / cycle
Latency: 3 cycles + register delays.
Critical path delay: 1 multiplier delay

33

Achieving High Throughput: Pipelining

• Divide data processing into stages
• Process different data inputs in different stages

simultaneously.

din dout

34

Achieving High Throughput: Pipelining

• Divide data processing into stages
• Process different data inputs in different stages

simultaneously.

din dout…stage 1 stage 2 stage n

Penalty: increase in area as logic needs to be duplicated
for different stages

registers

35

Reducing Latency

• Closely related to reducing critical path delay.
• Reducing pipeline registers reduces latency.

din dout…stage 1 stage 2 stage n

registers

36

Reducing Latency

• Closely related to reducing critical path delay.
• Reducing pipeline registers reduces latency.

din dout…stage 1 stage 2 stage n

37

Timing Optimization

• Maximal clock frequency determined by the longest path
delay in any combinational logic blocks.

• Pipelining is one approach.

din dout…stage 1 stage 2 stage n

registers

din dout

38

Timing Optimization: Spatial Computing

• Extract independent operations
• Execute independent operations in parallel.

X = A + B + C + D

process (a, b, c, d) begin
X1 := A + B;
X2 := X1 + C;
X <= X2 + D;

end process;

process (a, b, c, d) begin
X1 <= A + B;
X2 <= C + D;
X <= X1 + X2;

end process;

39

Timing Optimization: Spatial Computing

X = A + B + C + D

Critical path delay: 3 adders

process (a, b, c, d) begin
X1 := A + B;
X2 := X1 + C;
X <= X2 + D;

end process;

40

Timing Optimization: Spatial Computing

X = A + B + C + D

Critical path delay: 2 adders

process (a, b, c, d) begin
X1 <= A + B;
X2 <= C + D;
X <= X1 + X2;

end process;

41

Timing Optimization: Avoid Unwanted
Priority

process (clk, rst) begin
if rising_edge(clk) then

if c0=‘1’ then rout <= din1;
elsif c1=‘1’ then rout <= din2;
elsif c2=‘1’ then rout <= din3;
elsif c3=‘1’ then rout <= din4;
end if;

end if;
end process;

Critical path delay: 4 2x1MUX.

42

Timing Optimization: Avoid Unwanted
Priority

Critical path delay: 4 2x1 MUX.

12.1 DECISION TREES

In the context of FPGA design, we refer to a decision tree as the sequence of con-
ditions that are used to decide what action the logic will take. Usually, this breaks
down to if/else and case structures. Consider a very simple register write
example:

module regwrite(
output reg rout,
input clk,
input [3:0] in,
input [3:0] ctrl);

always @(posedge clk)
if(ctrl[0]) rout <= in[0];
else if(ctrl[1]) rout <= in[1];
else if(ctrl[2]) rout <= in[2];
else if(ctrl[3]) rout <= in[3];

endmodule

This type of if/else structure can be conceptualized according to the mux struc-
ture shown in Figure 12.1.

This type of decision structure could be implemented in a number of different
ways depending on speed/area trade-offs and required priority. This section
describes how various decision trees can be coded and constrained to target differ-
ent synthesized architectures.

12.1.1 Priority Versus Parallel

Inherent in the if/else structure is the concept of priority. Those conditions that
occur first in the if/else statement are given priority over others in the tree. A
higher priority with the structure above would correspond with the muxes near
the end of the chain and closer to the register.

Figure 12.1 Simple priority with seri-

alized mux structure.

172 Chapter 12 Coding for Synthesis

din2
din3

din1
din0

c3
c2

c1
c0

cont’d from previous slide

process (clk, rst) begin
if rising_edge(clk) then

case c is
when “0001” =>

rout <= din0;
when “0010” =>

rout <= din1;
when “0100” =>

rout <= din2;
when “1000” =>

rout <= din3;
when others => null;

end if;
end process;

43

Timing Optimization: Avoid Unwanted
Priority

44

Timing Optimization: Avoid Unwanted
Priority

cont’d from previous slide

AND

AND

AND

AND

OR Reg

c[0]

c[1]

c[2]

c[3]

din3

din2

din1

din0

rout

enable

Critical path delay: 2-AND plus 4-OR.

45

Timing Optimization: Register Balancing
• Maximal clock frequency determined by the longest path

delay in any combinational logic blocks.

din block 1 block 2 dout

din block 1 block 2 dout

Timing Optimization: Register Balancing

process (clk, rst) begin
if rising_edge(clk) then
rA <= A;
rB <= B;
rC <= C;
sum <= rA + rB + rC;

end if;
end process;

process (clk, rst) begin
if rising_edge(clk) then
sumAB <= A + B;
rC <= C;
sum <= sumAB + rC;

end if;
end process;

47

Optimization for Area

48

Area Optimization: Resource Sharing
• Rolling up pipeline: share common resources at different

time – a form of temporal computing

din
dout

din dout…stage 1 stage 2 stage n

Block including
all all logic in
stage 1 to n.

49

Area Optimization: Resource Sharing
• Use registers to hold inputs
• Develop FSM to select which inputs to process in each

cycle.
X = A + B + C + D

+

+
+

A
B

C
D

X

50

Area Optimization: Resource Sharing
• Use registers to hold inputs
• Develop FSM to select which inputs to process in each

cycle.
X = A + B + C + D

+ X

A
B
C
D

A, B, C, D need to hold
steady until X is processed

control

+

+
+

A
B

C
D

X

51

Area Optimization: Resource Sharing

example. In this case, we had arbitrary registers that represented the inputs
required to create a set of products. The most efficient way to sequence through
the set of multiplier inputs was with a state machine.

2.3 RESOURCE SHARING

When we use the term resource sharing, we are not referring to the low-level
optimizations performed by FPGA place and route tools (this is discussed in later
chapters). Instead, we are referring to higher-level architectural resource sharing
where different resources are shared across different functional boundaries. This
type of resource sharing should be used whenever there are functional blocks that
can be used in other areas of the design or even in different modules.

A simple example of resource sharing is with system counters. Many designs
use multiple counters for timers, sequencers, state machines, and so forth. Often-
times, these counters can be pulled to a higher level in the hierarchy and distribu-
ted to multiple functional units. For instance, consider modules A and B. Each of
these modules uses counters for a different reason. Module A uses the counter to

Figure 2.3 Separated counters.

2.3 Resource Sharing 23

Merge duplicate
components

together

52

Area Optimization: Resource Sharing

Merge duplicate
components

together

flag an operation every 256 clocks (at 100 MHz, this would correspond with a
trigger every 2.56 ms). Module B uses a counter to generate a PWM (Pulse Width
Modulated) pulse of varying duty cycle with a fixed frequency of 5.5 kHz (with a
100-MHz system clock, this would correspond with a period of hex 700 clocks).

Each module in Figure 2.3 performs a completely independent operation. The
counters in each module also have completely different characteristics. In module
A, the counter is 8 bits, free running, and rolls over automatically. In module B,
the counter is 11 bits and resets at a predefined value (1666). Nonetheless, these
counters can easily be merged into a global timer and used independently by
modules A and B as shown in Figure 2.4.

Here we were able to create a global 11-bit counter that satisfied the require-
ment of both module A and module B.

For compact designs where area is the primary requirement, search for resources
that have similar counterparts in other modules that can be brought to a global
point in the hierarchy and shared between multiple functional areas.

Figure 2.4 Shared counter.

24 Chapter 2 Architecting Area

53

Impact of Reset on Area – Xilinx Specific

Chapter 7: HDL Coding Techniques

Coding Guidelines
• These coding guidelines:

– Minimize slice logic utilization.

– Maximize circuit performance.

– Utilize device resources such as block RAM components and DSP blocks.

• Do not set or reset Registers asynchronously.

– Control set remapping becomes impossible.

– Sequential functionality in device resources such as block RAM components and
DSP blocks can be set or reset synchronously only.

– You will be unable to leverage device resources resources, or they will be
configured sub-optimally.

– Use synchronous initialization instead.

• Use Asynchronous to Synchronous if your own coding guidelines require Registers
to be set or reset asynchronously. This allows you to assess the benefits of using
synchronous set/reset.

• Do not describe Flip-Flops with both a set and a reset.

– No Flip-Flop primitives feature both a set and a reset, whether synchronous
or asynchronous.

– If not rejected by the software, Flip-Flop primitives featuring both a set and a
reset may adversely affect area and performance.

• Do not describe Flip-Flops with both an asynchronous reset and an asynchronous
set. XST rejects such Flip-Flops rather than retargeting them to a costly equivalent
model.

• Avoid operational set/reset logic whenever possible. There may be other, less
expensive, ways to achieve the desired effect, such as taking advantage of the circuit
global reset by defining an initial contents.

• Always describe the clock enable, set, and reset control inputs of Flip-Flop primitives
as active-High. If they are described as active-Low, the resulting inverter logic will
penalize circuit performance.

Flip-Flops and Registers Related Constraints
• Pack I/O Registers Into IOBs

• Register Duplication

• Equivalent Register Removal

• Register Balancing

• Asynchronous to Synchronous

For other ways to control implementation of Flip-Flops and Registers, see Mapping
Logic to LUTs.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
140 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback

Chapter 7: HDL Coding Techniques

Coding Guidelines
• These coding guidelines:

– Minimize slice logic utilization.

– Maximize circuit performance.

– Utilize device resources such as block RAM components and DSP blocks.

• Do not set or reset Registers asynchronously.

– Control set remapping becomes impossible.

– Sequential functionality in device resources such as block RAM components and
DSP blocks can be set or reset synchronously only.

– You will be unable to leverage device resources resources, or they will be
configured sub-optimally.

– Use synchronous initialization instead.

• Use Asynchronous to Synchronous if your own coding guidelines require Registers
to be set or reset asynchronously. This allows you to assess the benefits of using
synchronous set/reset.

• Do not describe Flip-Flops with both a set and a reset.

– No Flip-Flop primitives feature both a set and a reset, whether synchronous
or asynchronous.

– If not rejected by the software, Flip-Flop primitives featuring both a set and a
reset may adversely affect area and performance.

• Do not describe Flip-Flops with both an asynchronous reset and an asynchronous
set. XST rejects such Flip-Flops rather than retargeting them to a costly equivalent
model.

• Avoid operational set/reset logic whenever possible. There may be other, less
expensive, ways to achieve the desired effect, such as taking advantage of the circuit
global reset by defining an initial contents.

• Always describe the clock enable, set, and reset control inputs of Flip-Flop primitives
as active-High. If they are described as active-Low, the resulting inverter logic will
penalize circuit performance.

Flip-Flops and Registers Related Constraints
• Pack I/O Registers Into IOBs

• Register Duplication

• Equivalent Register Removal

• Register Balancing

• Asynchronous to Synchronous

For other ways to control implementation of Flip-Flops and Registers, see Mapping
Logic to LUTs.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
140 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback

54

Resetting Block RAM
• On-chip block RAM only supports synchronous reset.
• Suppose that Mem is 256x16b RAM.
• Implementations of Mem with synchronous and

asynchronous reset on Xilinx Virtex-4.

Again, the only variation we will consider in the above code is the type of reset:
synchronous versus asynchronous. In Xilinx Virtex-4 devices, for example,
BRAM (Block RAM) elements have synchronous resets only. Therefore, with a
synchronous reset, the synthesis tool will be able to implement this code with a
single BRAM element as shown in Figure 2.9.

However, if we attempt to implement the same RAM with an asynchronous
reset as shown in the code example above, the synthesis tool will be forced to
create a RAM module with smaller distributed RAM blocks, additional decode
logic to create the appropriate-size RAM, and additional logic to implement the
asynchronous reset as partially shown in Figure 2.10. The final implementation
differences are staggering as shown in Table 2.4.

Improperly resetting a RAM can have a catastrophic impact on the area.

Figure 2.9 Xilinx BRAM with synchronous reset.

Figure 2.10 Xilinx BRAM with asynchronous reset logic.

Table 2.4 Resource Utilization for BRAM with Synchronous and
Asynchronous Resets

Implementation Slices slice Flip-flops 4 Input LUTs BRAMs

Asynchronous reset 3415 4112 2388 0
Synchronous reset 0 0 0 1

30 Chapter 2 Architecting Area

55

Optimization for Power

56

Power Reduction Techniques
• In general, FPGAs are power hungry.
• Power consumption is determined by

where V is voltage, C is load capacitance, and f is
switching frequency

• In FPGAs, V is fixed, C depends on the number of
switching gates and length of wires connecting all gates.

• To reduce power,
• turn off gates not actively used,
• have multiple clock domains,
• reduce f.

P = V 2 · C · f

57

Dual-EdgeTriggered FFs
• A design that is active on both clock edges can reduce

clock frequency by 50%.

din dout
stage 1 stage 2 stage nstage 4

din dout
stage 1 stage 2 stage nstage 4

Example 1

Example 2 positively triggerednegatively triggered

58

Backup

FSMD

59

Input: M[i]
Outputs: max, min, average

max = 0
min = MAX
sum = 0
for i=0 to 31 do

d = M[i];
sum = sum + d
if (d < min) then

min = d
endif
if (d > max) then

max = d
endif

endfor
average = sum/32

