CDA 4253 FPGA System Design
Optimization Techniques

Hao Zheng
Comp S ci & Eng
Univ of South Florida

Extracted from
Advanced FPGA Design
by Steve Kilts

Optimization for Performance

Performance Definitions

* Throughput: the number of inputs processed per unit
time.

* Latency: the amount of time for an input to be processed.

* Maximizing throughput and minimizing latency in conflict.

* Both require timing optimization:
— Reduce delay of the critical path.

Achieving High Throughput: Pipelining

* Divide data processing into stages
* Process different data inputs in different stages

simultaneously.

xpower = 1;
for (i = 0; 1 < 3; i++4)
Xpower = X * xpower;

Throughput: 1 data / 3 cycles = 0.33
data / cycle .

Latency: 3 cycles.
Critical path delay: 1 multiplier delay

-- Non-pipelined version
process (clk) begin

if rising_edge(clk) then

if start=‘1’ then
cht <= 3;
end if;

if cnt > 0 then
cht <= cnt - 1;

Xpower <= Xpower ¥

elsif cnt = 0 then
done <= ‘1’;
end if;
end process;

Xy

Achieving High Throughput: Pipelining

Xpower = 1;
for (i=0;i<3;i++)

xpower = x * xpower;

Throughput: 1 data / cycle
Latency: 3 cycles + register delays.
Critical path delay: 1 multiplier delay

-- Pipelined version
process (clk, rst) begin
if rising_edge(clk) then
if start="1" then -- stage 1
X1 <=x;
Xpowerl <= x;
donel <= start;
end if;
-- stage 2
X2 <= x1;
xpower2 <= xpowerl * x1;
done2 <= donel;
-- stage 3
Xxpower <= xpower2 * x2;
done <= done2;
end if;
end process;

Comparison

lterative implementation

[7-:0]

[7:0]

o

>

[7:0]

ﬂ [7:0] .|

D[7:0] Q[7:0]

E

7:0]

[7:0]

[
m_m]

[7:0]
{XPowerI?:OI —

Pipelined implementation

|clk
| start
X[7:0] =
Iclk = -
- [7:0]
[X[Z:0] [7:0]

t D[7:0] Q[7:0]1

[7:0]

>

[7:0]
Torlzo A\ ¥ [7:0]

D[7:0] Q[7:0]1

>

[7:0]

D[7:0] QI7:0]

[7:0]

7:0]

[
7:0
[7:0] [7:0] * [7:0]

7:0]

>

[7:0]

D[7:0] QI7:0]{

] XPower[7:0

Achieving High Throughput: Pipelining

* Loop unrolling

X

 —— >

Achieving High Throughput: Pipelining

* Loop unrolling

CO [~|reg= CT1 =|Reg= -+ = Cn

Achieving High Throughput: Pipelining

* Divide data processing into stages
* Process different data inputs in different stages
simultaneously.

din d»out

—

10

Achieving High Throughput: Pipelining

* Divide data processing into stages
* Process different data inputs in different stages
simultaneously.

din dout

—| stage 1 | |—>|stage2 (—| |— —{ |[—|stagen

T~

Penalty: increase in area as logic needs to be duplicated
for different stages

reglsters

11

Reducing Latency

* Closely related to reducing critical path delay.
* Reducing pipeline registers reduces latency.

din

stage 1

T~

—| stage 2 —

reglsters

dout

stagen —

12

Reducing Latency

* Closely related to reducing critical path delay.
* Reducing pipeline registers reduces latency.

din

stage 1

stage 2

stage n

dout

13

Timing Optimization

 Maximal clock frequency determined by the longest path
delay in any combinational logic blocks.
* Pipelining is one approach.

din : . dout
— Stage — — Stage ——» — ...—> — Stage n ——
\ pipeline
registers

din — — dout

14

Timing Optimization: Spatial Computing

* Extract independent operations
* Execute independent operations in parallel.

X=A+B+C+D

process (clk, rst) begin
if rising_edge(clk) then
X1 :=A + B;
X2 :=X1+C;
X <=X2+D;
end if;
end process;

process (clk, rst) begin
if rising_edge(clk) then
X1 :=A+B;
X2 :=C+D;
X <=X1+X2;
end if;
end process;

Critical path delay: 3 adders

Critical path delay: 2 adders

15

Timing Optimization: Avoid Unwanted
Priority

process (clk, rst) begin
1f rising_edge(clk) then
if c[0]=‘1" then r[0] <= din;
elsif «c[1l]=‘1" then r[1l] <= din;
elsif c[2]=‘1" then r[2] <= din;
elsif c[3]=‘1" then r[3] <= din;
end if;
end 1f;
end process;

Critical path delay: 3-input AND gate + 4x1 MUX.

Timing Optimization: Avoid Unwanted Priority

D[3:0] Q[3:0]
E

3.0
[3:05]{ rout[3:0] —

[clk
[1] N
[0
(B >t/
[0] \
[3:1] L‘—Z
2] N [3:2 d B [
[0 [3:0
ft—() e
04 0 —
3] e
d
-0 /
[0] N
1
219
[?] 3
7]
K

Critical path delay: 3-input AND gate + 4x1 MUX.

Timing Optimization: Avoid Unwanted

Priority

process (clk,
1f rising

1f c[

1f

1f
end 1if;
end process;

CLl._
1t c[
C

rst) begin

_edge(clk) then
0]=‘1" then r[O0]
(1]=1" then r[1]
2]1="1" then r[2]
[3]=‘1" then r[3]

ol ool e!

1n;
in;
1n;
1n;

enc
enc
enc

enc

1f;
1f;
1f;
1f;

Critical path delay: 2x1 MUX

18

Timing Optimization: Avoid Unwanted Priority

[3]

[ctrl[3:0]

[in—

[3:0]

[3]

lclk

[2]

[2]

—D

D[3:0] Q[3:0] [3:053:0] rout[3:0]

[1]

(1]

[0]

[0]

Critical path delay: 2x1 MUX

19

Timing Optimization: Register Balancing

* Maximal clock frequency determined by the longest path

delay in any combinational logic blocks.

din —»

block 1 —

block 2

.~ dout

din —-

block 1

-

block 2

. dout

20

Timing Optimization: Register Balancing

process (clk, rst) begin
if rising_edge(clk) then

rA <= A;
rB <= B;
r¢c <= C;

sum <= rA + rB + rC;
end 1if;
end process;

process (clk, rst) begin
if rising_edge(clk) then
SUMAB <= A + B;
rc <= C;
sum <= SUmAB + rC;
end 1if;
end process;

Timing Optimization: Register Balancing

process (clk, rst) begin
if rising_edge(clk) then

rA <= A;
rB <= B;
rc <= C;

sum <= rA + rB + rgC;
end 1if;
end process;

[k >—75p>
o> DI7:0] Q[7:0) [
[7:0]
> . :
(BT (29 bi7:0 Qz:0] [7-0]Y+\ 0]

>

]>

. D[7:0] Q[7:0]

:0 :
[7:0] 7:0] \ / [7:0]

[7:0]

[7:0]

D[7:0] Q[7:0]]

Timing Optimization: Register Balancing

>

end process;

process (clk, rst) begin
if rising_edge(clk) then
SUMAB <= A + B;

r¢c <= C;
sum <= SUmMAB + rC;
end if;

>

[7:0]

[CroT— LY o701 qr7:o) frasm—test

[7:0] (o1 . +

[7:0] [7:0]
[clk
[7:0]

[A[7:0] —>— i

[7:0] 7:0] + - &) D[7:0] QI[7:0]
BT [7:0] [7:0]

[7:0]

D[7:0] Q[7:0]1

[7:0]

Optimization for Area

24

Area Optimization: Resource Sharing

* Rolling up pipleline: share common resources at different
time — a form of temporal computing

dﬂ. stage 1 ——| [—|stage 2 > > eee | [—|stagen

dout

e Block including
. | allalllogicin |— (- dout
din —» stage 1 to n.

25

Area Optimization: Resource Sharing

e Use registers to hold inputs
* Develop FSM to select which inputs to process in each
cycle.

X=A+B+C+D

s—| ¥ [3
+
B

26

Area Optimization: Resource Sharing

e Use registers to hold inputs
* Develop FSM to select which inputs to process in each
cycle.

X=A+B+C+D

A—\
B— ! C— |
D—»
C— 4+ |—1 control ¥
D—»

A, B, C, D need to hold
steady until X'is processed -

Area Optimization: Resource Sharing

Top Level Module

Module A
8-bit 8 bi C t 2.5
Me rge du pl icate Counlter . O:;p;; > strol:l:eS
components
together
Module B

Reset

11-bit | 11 bits» Comparator
Counter ==hex 6ff

'y

Comparator PWM 5.5 kHz,

Pulse Width > 0-100% duty

0 to hex 6ff

Area Optimization: Resource Sharing

Merge duplicate
components
together -
reduces a 8-bit
counter

Top Level Module

Module A
8 bits > Comparator 2.5 us
== 255 strobe
Counter Module
¢ Reset
bits 7:0
11 bit Comparator
, Counter == hex 6ff
bits 10:0 *
Module B
11 bits > C
. omparator PWM 5.5 kHz,
Pulse Width S % 0-100% duty
0 to hex 6ff

29

Impact of Reset on Area (Xilinx Specific)

Do not set or reset Registers asynchronously.
— Control set remapping becomes impossible.

— Sequential functionality in device resources such as block RAM components and
DSP blocks can be set or reset synchronously only.

— You will be unable to leverage device resources resources, or they will be
configured sub-optimally.

— Use synchronous initialization instead.

Do not describe Flip-Flops with both a set and a reset.

— No Flip-Flop primitives feature both a set and a reset, whether synchronous
or asynchronous.

— If not rejected by the software, Flip-Flop primitives featuring both a set and a
reset may adversely affect area and performance.

30

Reset or No Reset?

process (clk) begin
if rising_edge(clk) then
if rst = ‘0’ then
sr <= (others <= ‘0’);
else
sr <= din & sr(14 downto 0);
end if;
end if;
end process;

o
= - a ofs—a{a
o o ofo=—t=o
H e a
H

31

Reset or No Reset?

—_ O
[IIT
-t

| N0 A3 O 2Q 'I'}O
nzn»h—q—+ D
CLK

process (clk) begin
if rising_edge(clk) then
sr <= din & sr(14 downto 0);
end 1if;
end process;

32

Reset or No Reset?

Table 2.1 Resource Utilization for Shift Register

Implementations
Implementation Slices slice Flip-flops
Resets defined 9 16

No resets defined 1 1

33

Resetting Block RAM

* Block RAM only supports synchronous reset.

* Suppose that Mem is 256x16b RAM.

* Implementations of Mem with synchronous and
asynchronous reset on Xilinx Virtex-4.

Implementation Slices slice Flip-flops 4 Input LUTs BRAMs

Asynchronous reset 3415 4112 2388 0
Synchronous reset 0 0 0 1

VHDL model should match features offered by FPGA building
blocks in order for those devices instantiated in the

iImplementation.
34

Utilizing Set/Reset FF Pins

DSETQ
>

clr@

SET
D

>

Q

Q

CLR

Comb
Logic

Comb
Logic

Figure 2.11 Simple synchronous logic with OR gate

Signal A

DSETQ
>

CLR Q

Figure 2.12 OR gate implemented with set pin.

D SETQ
>

CLR Q

Figure 2.13 Simple synchronous logic with AND gate.

Comb
Logic

Comb
Logic

Signal A

-

DSETQ

Q|

CLR

DSETQ

CLR Q

1

Signal A

Figure 2.14 AND gate implemented with CLR pin.

35

Utilizing Set/Reset FF Pins — Example

process (clk, reset)

begin
if reset="0’ then
oDat <=‘0’;
else

oDat <= iDat1 | iDat2;
end if;
end process;

| iDat2

| iDat1

| iReset

Figure 2.15

| —) > -
D[0] Q[O]

R

.9

Simple asynchronous reset.

I oDat —~

36

Utilizing Set/Reset FF Pins — Example

process (clk, reset)
begin

oDat <= iDat1 | iDat2;
end process;

[iClk

| iDat2

| iDat1

Figure 2.16 Optimization without reset.

-—>

D[0] QO]
S

37

Optimization for Power

38

Power Reduction Techniques

In general, FPGAs are power hungry.
Power consumption is determined by

szlcj

where V is voltage, C is load capacitance, and fis
switching frequency
In FPGAs, Vis usually fixed, C depends on the number of
switching gates and length of wires connecting all gates.
To reduce power,
* turn off gates not actively used,
* have multiple clock domains,
* reduce f.

39

Dual-EdgeTriggered FFs

* A design that is active on both clock edges can reduce

clock frequency by 50%.
Example 1
dﬁ» stage 1 |- stage 2 stage 4 |» stage n

Example 2

din

stage 1

negatively triggered

T\

positively triggered

stage 2

stage 4

—

f

\

stage n

dout

dout

40

Dual-EdgeTriggered FFs — Example

process(clk)
begin
if (rising_edge(clk)) then
reg(0) <= din;
reg(2) <= reg(1);
end if;
end process;

process(clk)
begin
if(rising_edge(clk)) then
reg(1) <= reg(0);
reg(3) <= reg(2);
end if;
end process;

Synthesizable using Vivado 2016.2 41

