
CDA	4253	FPGA	System	Design	
Op7miza7on	Techniques	

1

Hao Zheng
Comp S ci & Eng

Univ of South Florida

2

Extracted from
Advanced FPGA Design

by Steve Kilts

3

Op7miza7on	for	Performance	

4

Performance	Defini7ons	

•  Throughput:	the	number	of	inputs	processed	per	unit	
2me.	

•  Latency:	the	amount	of	2me	for	an	input	to	be	processed.	
	
•  Maximizing	throughput	and	minimizing	latency	in	conflict.	

•  Both	require	2ming	op2miza2on:	
-  Reduce	delay	of	the	cri$cal	path.	

		

5

Achieving	High	Throughput:	Pipelining	

•  Divide	data	processing	into	stages	
•  Process	different	data	inputs	in	different	stages	
simultaneously.	

xpower = 1;

for (i = 0; i < 3; i++)

 xpower = x * xpower;

-- Non-pipelined version
process (clk) begin
 if rising_edge(clk) then
 if start=‘1’ then

 cnt <= 3;
 end if;
 if cnt > 0 then

 cnt <= cnt – 1;
 xpower <= xpower * x;

 elsif cnt = 0 then
 done <= ‘1’;
 end if;
end process;

Throughput: 1 data / 3 cycles = 0.33
data / cycle .
Latency: 3 cycles.
Critical path delay: 1 multiplier delay

6

Achieving	High	Throughput:	Pipelining	

xpower	=	1;	
for	(i	=	0;	i	<	3;	i++)	
					xpower	=	x	*	xpower;	

--	Pipelined	version	
process	(clk,	rst)	begin	
					if	rising_edge(clk)	then	
									if	start=‘1’	then		--	stage	1	

	x1	<=	x;	
	xpower1	<=	x;	
	done1	<=	start;	

									end	if;	
										--	stage	2	
										x2	<=	x1;	 															
										xpower2	<=	xpower1	*	x1;	
										done2	<=	done1;	
										--	stage	3	
										xpower	<=	xpower2	*	x2;	
										done	<=	done2;	
				end	if;	
end	process;	

Throughput: 1 data / cycle
Latency: 3 cycles + register delays.
Critical path delay: 1 multiplier delay

Comparison	

7

else if(!finished) begin
ncount <= ncount - 1;
XPower <= XPower * X;

end
endmodule

In the above example, the same register and computational resources are reused
until the computation is finished as shown in Figure 1.1.

With this type of iterative implementation, no new computations can begin
until the previous computation has completed. This iterative scheme is very
similar to a software implementation. Also note that certain handshaking signals
are required to indicate the beginning and completion of a computation. An
external module must also use the handshaking to pass new data to the module
and receive a completed calculation. The performance of this implementation is

Throughput ¼ 8/3, or 2.7 bits/clock

Latency ¼ 3 clocks

Timing ¼ One multiplier delay in the critical path

Contrast this with a pipelined version of the same algorithm:

module power3(
output reg [7:0] XPower,
input clk,
input [7:0] X
);
reg [7:0] XPower1, XPower2;
reg [7:0] X1, X2;
always @(posedge clk) begin

// Pipeline stage 1
X1 <= X;
XPower1 <= X;

// Pipeline stage 2
X2 <= X1;
XPower2 <= XPower1 * X1;

// Pipeline stage 3
XPower <= XPower2 * X2;

end
endmodule

Figure 1.1 Iterative implementation.

1.1 High Throughput 3

In the above implementation, the value of X is passed to both pipeline stages
where independent resources compute the corresponding multiply operation. Note
that while X is being used to calculate the final power of 3 in the second pipeline
stage, the next value of X can be sent to the first pipeline stage as shown in
Figure 1.2.

Both the final calculation of X3 (XPower3 resources) and the first calculation
of the next value of X (XPower2 resources) occur simultaneously. The perform-
ance of this design is

Throughput ¼ 8/1, or 8 bits/clock

Latency ¼ 3 clocks

Timing ¼ One multiplier delay in the critical path

The throughput performance increased by a factor of 3 over the iterative
implementation. In general, if an algorithm requiring n iterative loops is
“unrolled,” the pipelined implementation will exhibit a throughput performance
increase of a factor of n. There was no penalty in terms of latency as the pipelined
implementation still required 3 clocks to propagate the final computation. Like-
wise, there was no timing penalty as the critical path still contained only one
multiplier.

Unrolling an iterative loop increases throughput.

The penalty to pay for unrolling loops such as this is an increase in area. The
iterative implementation required a single register and multiplier (along with some
control logic not shown in the diagram), whereas the pipelined implementation
required a separate register for both X and XPower and a separate multiplier for
every pipeline stage. Optimizations for area are discussed in the Chapter 2.

The penalty for unrolling an iterative loop is a proportional increase in area.

1.2 LOW LATENCY

A low-latency design is one that passes the data from the input to the output as
quickly as possible by minimizing the intermediate processing delays. Oftentimes,
a low-latency design will require parallelisms, removal of pipelining, and logical
short cuts that may reduce the throughput or the max clock speed in a design.

Figure 1.2 Pipelined implementation.

4 Chapter 1 Architecting Speed

Iterative implementation

Pipelined implementation

8

Achieving	High	Throughput:	Pipelining	

C

•  Loop	unrolling	

X	 Y	

Reg

9

Achieving	High	Throughput:	Pipelining	

C0

•  Loop	unrolling	

X	

Y

Reg C1 Reg Cn ...

10

Achieving	High	Throughput:	Pipelining	

•  Divide	data	processing	into	stages	
•  Process	different	data	inputs	in	different	stages	
simultaneously.	

din	 dout	

11

Achieving	High	Throughput:	Pipelining	

•  Divide	data	processing	into	stages	
•  Process	different	data	inputs	in	different	stages	
simultaneously.	

din	 dout	…	stage 1 stage 2 stage n

Penalty:	increase	in	area	as	logic	needs	to	be	duplicated	
for	different	stages			

registers

12

Reducing	Latency	

•  Closely	related	to	reducing	cri2cal	path	delay.	
•  Reducing	pipeline	registers	reduces	latency.	

din	 dout	…	stage 1 stage 2 stage n

registers

13

Reducing	Latency	

•  Closely	related	to	reducing	cri2cal	path	delay.	
•  Reducing	pipeline	registers	reduces	latency.	

din	 dout	…	stage 1 stage 2 stage n

14

Timing	Op7miza7on	

•  Maximal	clock	frequency	determined	by	the	longest	path	
delay	in	any	combina2onal	logic	blocks.	

•  Pipelining	is	one	approach.	

din	 dout	…	stage 1 stage 2 stage n

pipeline
registers

din	 dout	

15

Timing	Op7miza7on:	Spa7al	Compu7ng	

•  Extract	independent	opera2ons	
•  Execute	independent	opera2ons	in	parallel.	

X	=	A	+	B	+	C	+	D	

process	(clk,	rst)	begin	
					if	rising_edge(clk)	then	
									X1	:=	A	+	B;	
									X2	:=	X1	+	C;	
									X			<=	X2	+	D;	
				end	if;	
end	process;	

process	(clk,	rst)	begin	
					if	rising_edge(clk)	then	
									X1	:=	A	+	B;	
									X2	:=	C	+	D;	
									X			<=	X1	+	X2;	
				end	if;	
end	process;	

Critical path delay: 3 adders Critical path delay: 2 adders

16

Timing	Op7miza7on:	Avoid	Unwanted	
Priority		

process (clk, rst) begin
 if rising_edge(clk) then
 if c[0]=‘1’ then r[0] <= din;
 elsif c[1]=‘1’ then r[1] <= din;
 elsif c[2]=‘1’ then r[2] <= din;
 elsif c[3]=‘1’ then r[3] <= din;
 end if;
 end if;
end process;

Critical path delay: 3-input AND gate + 4x1 MUX.

17

Timing	Op7miza7on:	Avoid	Unwanted	Priority		

Critical path delay: 3-input AND gate + 4x1 MUX.
If the control lines are strobes from an address decoder in another module,

then each strobe is mutually exclusive to the others as they all represent a unique
address. However, here we have coded this as if it were a priority decision. Due
to the nature of the control signals, the above code will operate exactly as if it
were coded in a parallel fashion, but it is unlikely the synthesis tool will be smart
enough to recognize that, particularly if the address decode takes place behind
another layer of registers.

To remove the priority and thereby flatten the logic, we can code this module
as shown below:

module regwrite(
output reg [3:0] rout,
input clk, in,
input [3:0] ctrl);

always @(posedge clk) begin
if(ctrl[0]) rout[0] <= in;
if(ctrl[1]) rout[1] <= in;
if(ctrl[2]) rout[2] <= in;
if(ctrl[3]) rout[3] <= in;

end
endmodule

As can be seen in the gate-level implementation, no priority logic is used as
shown in Figure 1.8. Each of the control signals acts independently and controls
its corresponding rout bits independently.

By removing priority encodings where they are not needed, the logic structure is
flattened and the path delay is reduced.

Figure 1.7 Priority encoding.

1.3 Timing 11

18

Timing	Op7miza7on:	Avoid	Unwanted	
Priority		

Critical path delay: 2x1 MUX

process (clk, rst) begin
 if rising_edge(clk) then
 if c[0]=‘1’ then r[0] <= din; end if;
 if c[1]=‘1’ then r[1] <= din; end if;
 if c[2]=‘1’ then r[2] <= din; end if;
 if c[3]=‘1’ then r[3] <= din; end if;
 end if;
end process;

19

Timing	Op7miza7on:	Avoid	Unwanted	Priority		

Critical path delay: 2x1 MUX

1.3.4 Register Balancing

The fourth strategy is called register balancing. Conceptually, the idea is to redis-
tribute logic evenly between registers to minimize the worst-case delay between
any two registers. This technique should be used whenever logic is highly imbal-
anced between the critical path and an adjacent path. Because the clock speed is
limited by only the worst-case path, it may only take one small change to success-
fully rebalance the critical logic.

Many synthesis tools also have an optimization called register balancing. This
feature will essentially recognize specific structures and reposition registers around
logic in a predetermined fashion. This can be useful for common structures such
as large multipliers but is limited and will not change your logic nor recognize
custom functionality. Depending on the technology, it may require more expensive
synthesis tools to implement. Thus, it is very important to understand this concept
and have the ability to redistribute logic in custom logic structures.

Figure 1.8 No priority encoding.

12 Chapter 1 Architecting Speed

20

Timing	Op7miza7on:	Register	Balancing	

•  Maximal	clock	frequency	determined	by	the	longest	path	
delay	in	any	combina2onal	logic	blocks.	

din	 block 1 block 2 dout	

din	 block 1 block 2 dout	

Timing	Op7miza7on:	Register	Balancing	

process (clk, rst) begin
 if rising_edge(clk) then
 rA <= A;
 rB <= B;
 rC <= C;
 sum <= rA + rB + rC;
 end if;
end process;

process (clk, rst) begin
 if rising_edge(clk) then
 sumAB <= A + B;
 rC <= C;
 sum <= sumAB + rC;
 end if;
end process;

Timing	Op7miza7on:	Register	Balancing	

Note the following code for an adder that adds three 8-bit inputs:

module adder(
output reg [7:0] Sum,
input [7:0] A, B, C,
input clk);
reg [7:0] rA, rB, rC;

always @(posedge clk) begin
rA <= A;
rB <= B;
rC <= C;
Sum <= rA + rB + rC;

end
endmodule

The first register stage consists of rA, rB, and rC, and the second stage consists of
Sum. The logic between stages 1 and 2 is the adder for all inputs, whereas
the logic between the input and the first register stage contains no logic (assume
the outputs feeding this module are registered) as shown in Figure 1.9.

If the critical path is defined through the adder, some of the logic in the criti-
cal path can be moved back a stage, thereby balancing the logic load between the
two register stages. Consider the following modification where one of the add
operations is moved back a stage:

module adder(
output reg [7:0] Sum,
input [7:0] A, B, C,
input clk);
reg [7:0] rABSum, rC;

Figure 1.9 Registered adder.

1.3 Timing 13

process (clk, rst) begin
 if rising_edge(clk) then
 rA <= A;
 rB <= B;
 rC <= C;
 sum <= rA + rB + rC;
 end if;
end process;

Timing	Op7miza7on:	Register	Balancing	

always @(posedge clk) begin
rABSum <= A + B;
rC <= C;
Sum <= rABSum + rC;

end
endmodule

We have now moved one of the add operations back one stage between the input
and the first register stage. This balances the logic between the pipeline stages
and reduces the critical path as shown in Figure 1.10.

Register balancing improves timing by moving combinatorial logic from the
critical path to an adjacent path.

1.3.5 Reorder Paths

The fifth strategy is to reorder the paths in the data flow to minimize the critical
path. This technique should be used whenever multiple paths combine with the
critical path, and the combined path can be reordered such that the critical path
can be moved closer to the destination register. With this strategy, we will only
be concerned with the logic paths between any given set of registers. Consider the
following module:

module randomlogic(
output reg [7:0] Out,
input [7:0] A, B, C,
input clk,
input Cond1, Cond2);

always @(posedge clk)
if(Cond1)
Out <= A;

else if(Cond2 && (C < 8))
Out <= B;

else
Out <= C;

endmodule

Figure 1.10 Registers balanced.

14 Chapter 1 Architecting Speed

process (clk, rst) begin
 if rising_edge(clk) then
 sumAB <= A + B;
 rC <= C;
 sum <= sumAB + rC;
 end if;
end process;

24

Op7miza7on	for	Area	

25

Area	Op7miza7on:	Resource	Sharing	

•  Rolling	up	pipleline:	share	common	resources	at	different	
2me	–	a	form	of	temporal	compu2ng	

din	
dout	

din	 dout	…	stage 1 stage 2 stage n

Block including
all all logic in
stage 1 to n.

26

Area	Op7miza7on:	Resource	Sharing	

•  Use	registers	to	hold	inputs	
•  Develop	FSM	to	select	which	inputs	to	process	in	each	
cycle.	

X	=	A	+	B	+	C	+	D	

+

+
+

A
B

C
D

X

27

Area	Op7miza7on:	Resource	Sharing	

•  Use	registers	to	hold	inputs	
•  Develop	FSM	to	select	which	inputs	to	process	in	each	
cycle.	

X	=	A	+	B	+	C	+	D	

+

+
+

A
B

C
D

X + X

A
B
C
D

A, B, C, D need to hold
steady until X is processed

control

28

Area	Op7miza7on:	Resource	Sharing	

example. In this case, we had arbitrary registers that represented the inputs
required to create a set of products. The most efficient way to sequence through
the set of multiplier inputs was with a state machine.

2.3 RESOURCE SHARING

When we use the term resource sharing, we are not referring to the low-level
optimizations performed by FPGA place and route tools (this is discussed in later
chapters). Instead, we are referring to higher-level architectural resource sharing
where different resources are shared across different functional boundaries. This
type of resource sharing should be used whenever there are functional blocks that
can be used in other areas of the design or even in different modules.

A simple example of resource sharing is with system counters. Many designs
use multiple counters for timers, sequencers, state machines, and so forth. Often-
times, these counters can be pulled to a higher level in the hierarchy and distribu-
ted to multiple functional units. For instance, consider modules A and B. Each of
these modules uses counters for a different reason. Module A uses the counter to

Figure 2.3 Separated counters.

2.3 Resource Sharing 23

Merge duplicate
components

together

29

Area	Op7miza7on:	Resource	Sharing	

Merge duplicate
components
together –

reduces a 8-bit
counter

flag an operation every 256 clocks (at 100 MHz, this would correspond with a
trigger every 2.56 ms). Module B uses a counter to generate a PWM (Pulse Width
Modulated) pulse of varying duty cycle with a fixed frequency of 5.5 kHz (with a
100-MHz system clock, this would correspond with a period of hex 700 clocks).

Each module in Figure 2.3 performs a completely independent operation. The
counters in each module also have completely different characteristics. In module
A, the counter is 8 bits, free running, and rolls over automatically. In module B,
the counter is 11 bits and resets at a predefined value (1666). Nonetheless, these
counters can easily be merged into a global timer and used independently by
modules A and B as shown in Figure 2.4.

Here we were able to create a global 11-bit counter that satisfied the require-
ment of both module A and module B.

For compact designs where area is the primary requirement, search for resources
that have similar counterparts in other modules that can be brought to a global
point in the hierarchy and shared between multiple functional areas.

Figure 2.4 Shared counter.

24 Chapter 2 Architecting Area

30

Impact	of	Reset	on	Area	(Xilinx	Specific)	

Chapter 7: HDL Coding Techniques

Coding Guidelines
• These coding guidelines:

– Minimize slice logic utilization.

– Maximize circuit performance.

– Utilize device resources such as block RAM components and DSP blocks.

• Do not set or reset Registers asynchronously.

– Control set remapping becomes impossible.

– Sequential functionality in device resources such as block RAM components and
DSP blocks can be set or reset synchronously only.

– You will be unable to leverage device resources resources, or they will be
configured sub-optimally.

– Use synchronous initialization instead.

• Use Asynchronous to Synchronous if your own coding guidelines require Registers
to be set or reset asynchronously. This allows you to assess the benefits of using
synchronous set/reset.

• Do not describe Flip-Flops with both a set and a reset.

– No Flip-Flop primitives feature both a set and a reset, whether synchronous
or asynchronous.

– If not rejected by the software, Flip-Flop primitives featuring both a set and a
reset may adversely affect area and performance.

• Do not describe Flip-Flops with both an asynchronous reset and an asynchronous
set. XST rejects such Flip-Flops rather than retargeting them to a costly equivalent
model.

• Avoid operational set/reset logic whenever possible. There may be other, less
expensive, ways to achieve the desired effect, such as taking advantage of the circuit
global reset by defining an initial contents.

• Always describe the clock enable, set, and reset control inputs of Flip-Flop primitives
as active-High. If they are described as active-Low, the resulting inverter logic will
penalize circuit performance.

Flip-Flops and Registers Related Constraints
• Pack I/O Registers Into IOBs

• Register Duplication

• Equivalent Register Removal

• Register Balancing

• Asynchronous to Synchronous

For other ways to control implementation of Flip-Flops and Registers, see Mapping
Logic to LUTs.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
140 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback

Chapter 7: HDL Coding Techniques

Coding Guidelines
• These coding guidelines:

– Minimize slice logic utilization.

– Maximize circuit performance.

– Utilize device resources such as block RAM components and DSP blocks.

• Do not set or reset Registers asynchronously.

– Control set remapping becomes impossible.

– Sequential functionality in device resources such as block RAM components and
DSP blocks can be set or reset synchronously only.

– You will be unable to leverage device resources resources, or they will be
configured sub-optimally.

– Use synchronous initialization instead.

• Use Asynchronous to Synchronous if your own coding guidelines require Registers
to be set or reset asynchronously. This allows you to assess the benefits of using
synchronous set/reset.

• Do not describe Flip-Flops with both a set and a reset.

– No Flip-Flop primitives feature both a set and a reset, whether synchronous
or asynchronous.

– If not rejected by the software, Flip-Flop primitives featuring both a set and a
reset may adversely affect area and performance.

• Do not describe Flip-Flops with both an asynchronous reset and an asynchronous
set. XST rejects such Flip-Flops rather than retargeting them to a costly equivalent
model.

• Avoid operational set/reset logic whenever possible. There may be other, less
expensive, ways to achieve the desired effect, such as taking advantage of the circuit
global reset by defining an initial contents.

• Always describe the clock enable, set, and reset control inputs of Flip-Flop primitives
as active-High. If they are described as active-Low, the resulting inverter logic will
penalize circuit performance.

Flip-Flops and Registers Related Constraints
• Pack I/O Registers Into IOBs

• Register Duplication

• Equivalent Register Removal

• Register Balancing

• Asynchronous to Synchronous

For other ways to control implementation of Flip-Flops and Registers, see Mapping
Logic to LUTs.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
140 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback

Reset	or	No	Reset?	

31

process (clk) begin
 if rising_edge(clk) then
 if rst = ‘0’ then

 sr <= (others <= ‘0’);
 else
 sr <= din & sr(14 downto 0);
 end if;
 end if;
end process;

signals to the resource. The shift register would be implemented as discrete flip-
flops as shown in Figure 2.6. The difference is drastic as summarized in
Table 2.1.

An optimized FPGA resource will not be used if an incompatible reset is
assigned to it. The function will be implemented with generic elements and will
occupy more area.

By removing the reset signals, we were able to reduce 9 slices and 16 slice
flip-flops to a single slice and single slice flip-flop. This corresponds with an opti-
mally compact and high-speed shift-register implementation.

2.4.2 Resources Without Set

Similar to the problem raised in the previous section, some internal resources lack
any type of set capability. An example is that of an 8!8 multiplier:

module mult8(
output reg [15:0] oDat,
input iReset, iClk,
input [7:0] iDat1, iDat2,
);

Figure 2.5 Shift register implemented with SRL16 element.

Figure 2.6 Shift register implemented with flip-flops.

Table 2.1 Resource Utilization for Shift Register
Implementations

Implementation Slices slice Flip-flops

Resets defined 9 16
No resets defined 1 1

26 Chapter 2 Architecting Area

Reset	or	No	Reset?	

32

process (clk) begin
 if rising_edge(clk) then
 sr <= din & sr(14 downto 0);
 end if;
end process;

signals to the resource. The shift register would be implemented as discrete flip-
flops as shown in Figure 2.6. The difference is drastic as summarized in
Table 2.1.

An optimized FPGA resource will not be used if an incompatible reset is
assigned to it. The function will be implemented with generic elements and will
occupy more area.

By removing the reset signals, we were able to reduce 9 slices and 16 slice
flip-flops to a single slice and single slice flip-flop. This corresponds with an opti-
mally compact and high-speed shift-register implementation.

2.4.2 Resources Without Set

Similar to the problem raised in the previous section, some internal resources lack
any type of set capability. An example is that of an 8!8 multiplier:

module mult8(
output reg [15:0] oDat,
input iReset, iClk,
input [7:0] iDat1, iDat2,
);

Figure 2.5 Shift register implemented with SRL16 element.

Figure 2.6 Shift register implemented with flip-flops.

Table 2.1 Resource Utilization for Shift Register
Implementations

Implementation Slices slice Flip-flops

Resets defined 9 16
No resets defined 1 1

26 Chapter 2 Architecting Area

Reset	or	No	Reset?	

33

signals to the resource. The shift register would be implemented as discrete flip-
flops as shown in Figure 2.6. The difference is drastic as summarized in
Table 2.1.

An optimized FPGA resource will not be used if an incompatible reset is
assigned to it. The function will be implemented with generic elements and will
occupy more area.

By removing the reset signals, we were able to reduce 9 slices and 16 slice
flip-flops to a single slice and single slice flip-flop. This corresponds with an opti-
mally compact and high-speed shift-register implementation.

2.4.2 Resources Without Set

Similar to the problem raised in the previous section, some internal resources lack
any type of set capability. An example is that of an 8!8 multiplier:

module mult8(
output reg [15:0] oDat,
input iReset, iClk,
input [7:0] iDat1, iDat2,
);

Figure 2.5 Shift register implemented with SRL16 element.

Figure 2.6 Shift register implemented with flip-flops.

Table 2.1 Resource Utilization for Shift Register
Implementations

Implementation Slices slice Flip-flops

Resets defined 9 16
No resets defined 1 1

26 Chapter 2 Architecting Area

34

ReseVng	Block	RAM	

•  Block	RAM	only	supports	synchronous	reset.	
•  Suppose	that	Mem	is	256x16b	RAM.		
•  Implementa2ons	of	Mem	with	synchronous	and	
asynchronous	reset	on	Xilinx	Virtex-4.	

Again, the only variation we will consider in the above code is the type of reset:
synchronous versus asynchronous. In Xilinx Virtex-4 devices, for example,
BRAM (Block RAM) elements have synchronous resets only. Therefore, with a
synchronous reset, the synthesis tool will be able to implement this code with a
single BRAM element as shown in Figure 2.9.

However, if we attempt to implement the same RAM with an asynchronous
reset as shown in the code example above, the synthesis tool will be forced to
create a RAM module with smaller distributed RAM blocks, additional decode
logic to create the appropriate-size RAM, and additional logic to implement the
asynchronous reset as partially shown in Figure 2.10. The final implementation
differences are staggering as shown in Table 2.4.

Improperly resetting a RAM can have a catastrophic impact on the area.

Figure 2.9 Xilinx BRAM with synchronous reset.

Figure 2.10 Xilinx BRAM with asynchronous reset logic.

Table 2.4 Resource Utilization for BRAM with Synchronous and
Asynchronous Resets

Implementation Slices slice Flip-flops 4 Input LUTs BRAMs

Asynchronous reset 3415 4112 2388 0
Synchronous reset 0 0 0 1

30 Chapter 2 Architecting Area

VHDL model should match features offered by FPGA building
blocks in order for those devices instantiated in the

implementation.

U7lizing	Set/Reset	FF	Pins	

35

2.4.5 Utilizing Set/Reset Flip-Flop Pins

Most FPGA vendors have a variety of flip-flop elements available in any given device,
and given a particular logic function, the synthesis tool can often use the set and reset
pins to implement aspects of the logic and reduce the burden on the look-up tables.
For instance, consider Figure 2.11. In this case, the synthesis tool may choose to
implement the logic using the set pin on a flip-flop as shown in Figure 2.12. This
eliminates gates and increases the speed of the data path. Likewise, consider a logic
function of the form illustrated in Figure 2.13. The AND gate can be eliminated by
running the input signal to the reset pin of the flip-flop as shown in Figure 2.14.

The primary reason synthesis tools are prevented from performing this class
of optimizations is related to the reset strategy. Any constraints on the reset will
not only use available set/reset pins but will also limit the number of library
elements to choose from.

Using set and reset can prevent certain combinatorial logic optimizations.

For instance, consider the following implementation in a Xilinx Spartan-3
device:

module setreset(
output reg oDat,
input iReset, iClk,
input iDat1, iDat2);

always @(posedge iClk or negedge iReset)
if(!iReset)
oDat <= 0;

else
oDat <= iDat1 | iDat2;

endmodule

Figure 2.11 Simple synchronous logic with OR gate.

Figure 2.12 OR gate implemented with set pin.

2.4 Impact of Reset on Area 31

In the code example above, an external reset signal is used to reset the state of
the flip-flop. This is represented in Figure 2.15.

As can be seen in Figure 2.15, a resetable flip-flop was used for the asynchro-
nous reset capability, and the logic function (OR gate) was implemented in dis-
crete logic. As an alternative, if we remove the reset but implement the same
logic function, our design will be optimized as shown in Figure 2.16.

In this implementation, the synthesis tool was able to use the FDS element
(flip-flop with a synchronous set and reset) and use the set pin for the OR oper-
ation. Thus, by allowing the synthesis tool to choose a flip-flop with a synchro-
nous set, we are able to implement this function with zero logic elements.

Figure 2.14 AND gate implemented with CLR pin.

Figure 2.13 Simple synchronous logic with AND gate.

Figure 2.15 Simple asynchronous reset.

32 Chapter 2 Architecting Area

U7lizing	Set/Reset	FF	Pins	–	Example	

36

process (clk, reset)
begin
 if reset=‘0’ then
 oDat <= ‘0’;
 else
 oDat <= iDat1 | iDat2;
 end if;
end process;

In the code example above, an external reset signal is used to reset the state of
the flip-flop. This is represented in Figure 2.15.

As can be seen in Figure 2.15, a resetable flip-flop was used for the asynchro-
nous reset capability, and the logic function (OR gate) was implemented in dis-
crete logic. As an alternative, if we remove the reset but implement the same
logic function, our design will be optimized as shown in Figure 2.16.

In this implementation, the synthesis tool was able to use the FDS element
(flip-flop with a synchronous set and reset) and use the set pin for the OR oper-
ation. Thus, by allowing the synthesis tool to choose a flip-flop with a synchro-
nous set, we are able to implement this function with zero logic elements.

Figure 2.14 AND gate implemented with CLR pin.

Figure 2.13 Simple synchronous logic with AND gate.

Figure 2.15 Simple asynchronous reset.

32 Chapter 2 Architecting Area

U7lizing	Set/Reset	FF	Pins	–	Example	

37

process (clk, reset)
begin
 oDat <= iDat1 | iDat2;
end process;

We can take this one step further by using both synchronous set and reset
signals. If we have a logic equation to evaluate in the form of

oDat ,¼ !iDat3 & (iDat1 j iDat2)

we can code this in such a way that both the synchronous set and reset resources
are used:

module setreset (
output reg oDat,
input iClk,
input iDat1, iDat2, iDat3);

always @(posedge iClk)
if(iDat3)
oDat <= 0;
else if(iDat1)
oDat <= 1;

else
oDat <= iDat2;

endmodule

Here, the iDat3 input takes priority similar to the reset pin on the associated
flip-flops. Thus, this logic function can be implemented as shown in
Figure 2.17.

In this circuit, we have three logical operations (invert, AND, and OR) all
implemented with a single flip-flop and zero LUTs. Because these optimizations

Figure 2.16 Optimization without reset.

2.4 Impact of Reset on Area 33

38

Op7miza7on	for	Power	

39

Power	Reduc7on	Techniques	

•  In	general,	FPGAs	are	power	hungry.		
•  Power	consump2on	is	determined	by	

				where	V	is	voltage,	C	is	load	capacitance,	and	f	is						
					switching	frequency	
•  In	FPGAs,	V	is	usually	fixed,	C		depends	on	the	number	of	
switching	gates	and	length	of	wires	connec2ng	all	gates.	

•  To	reduce	power,		
•  turn	off	gates	not	ac2vely	used,	
•  have	mul2ple	clock	domains,	
•  reduce	f.	

P = V 2 · C · f

40

Dual-EdgeTriggered	FFs		

•  A	design	that	is	ac2ve	on	both	clock	edges	can	reduce	
clock	frequency	by	50%.	

din	 dout	
stage 1 stage 2 stage n stage 4

din	 dout	
stage 1 stage 2 stage n stage 4

Example	1	

Example	2	 posi2vely	triggered	nega2vely	triggered	

41

Dual-EdgeTriggered	FFs	–	Example		

process(clk)
begin
 if (rising_edge(clk)) then

 reg(0) <= din;
 reg(2) <= reg(1);

 end if;
end process;

process(clk)
begin
 if(rising_edge(clk)) then

 reg(1) <= reg(0);
 reg(3) <= reg(2);

 end if;
end process;

Synthesizable using Vivado 2016.2

