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Optimization for Performance



Performance Definitions

* Throughput: the number of inputs processed per unit
time.

* Latency: the amount of time for an input to be processed.

* Maximizing throughput and minimizing latency in conflict.

* Both require timing optimization:
— Reduce delay of the critical path.



Achieving High Throughput: Pipelining

* Divide data processing into stages
* Process different data inputs in different stages

simultaneously.

xpower = 1;
for (i = 0; 1 < 3; i++4)
Xpower = X * xpower;

Throughput: 1 data / 3 cycles = 0.33
data / cycle .

Latency: 3 cycles.
Critical path delay: 1 multiplier delay

-- Non-pipelined version
process (clk) begin

if rising_edge(clk) then

if start=‘1’ then
cht <= 3;
end if;

if cnt > 0 then
cht <= cnt - 1;

Xpower <= Xpower ¥

elsif cnt = 0 then
done <= ‘1’;
end if;
end process;
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Achieving High Throughput: Pipelining

Xpower = 1;
for (i=0;i<3;i++)

xpower = x * xpower;

Throughput: 1 data / cycle
Latency: 3 cycles + register delays.
Critical path delay: 1 multiplier delay

-- Pipelined version
process (clk, rst) begin
if rising_edge(clk) then
if start="1" then -- stage 1
X1 <=x;
Xpowerl <= x;
donel <= start;
end if;
-- stage 2
X2 <= x1;
xpower2 <= xpowerl * x1;
done2 <= donel;
-- stage 3
Xxpower <= xpower2 * x2;
done <= done2;
end if;
end process;
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Achieving High Throughput: Pipelining

* Loop unrolling
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Achieving High Throughput: Pipelining

* Loop unrolling
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Achieving High Throughput: Pipelining

* Divide data processing into stages
* Process different data inputs in different stages
simultaneously.
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Achieving High Throughput: Pipelining

* Divide data processing into stages
* Process different data inputs in different stages
simultaneously.
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Penalty: increase in area as logic needs to be duplicated
for different stages

reglsters
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Reducing Latency

* Closely related to reducing critical path delay.
* Reducing pipeline registers reduces latency.
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Reducing Latency

* Closely related to reducing critical path delay.
* Reducing pipeline registers reduces latency.
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Timing Optimization

 Maximal clock frequency determined by the longest path
delay in any combinational logic blocks.
* Pipelining is one approach.

din : . dout
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\ pipeline
registers
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Timing Optimization: Spatial Computing

* Extract independent operations
* Execute independent operations in parallel.

X=A+B+C+D

process (clk, rst) begin
if rising_edge(clk) then
X1 :=A + B;
X2 :=X1+C;
X <=X2+D;
end if;
end process;

process (clk, rst) begin
if rising_edge(clk) then
X1 :=A+B;
X2 :=C+D;
X <=X1+X2;
end if;
end process;

Critical path delay: 3 adders

Critical path delay: 2 adders
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Timing Optimization: Avoid Unwanted
Priority

process (clk, rst) begin
1f rising_edge(clk) then
if c[0]=‘1" then r[0] <= din;
elsif «c[1l]=‘1" then r[1l] <= din;
elsif c[2]=‘1" then r[2] <= din;
elsif c[3]=‘1" then r[3] <= din;
end if;
end 1f;
end process;

Critical path delay: 3-input AND gate + 4x1 MUX.



Timing Optimization: Avoid Unwanted Priority
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Timing Optimization: Avoid Unwanted

Priority

process (clk,
1f rising

1f c[

1f

1f
end 1if;
end process;
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rst) begin

_edge(clk) then
0]=‘1" then r[O0]
(1]=1" then r[1]
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[3]=‘1" then r[3]
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Critical path delay: 2x1 MUX
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Timing Optimization: Avoid Unwanted Priority
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Timing Optimization: Register Balancing

* Maximal clock frequency determined by the longest path

delay in any combinational logic blocks.
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Timing Optimization: Register Balancing

process (clk, rst) begin
if rising_edge(clk) then

rA <= A;
rB <= B;
r¢c <= C;

sum <= rA + rB + rC;
end 1if;
end process;

process (clk, rst) begin
if rising_edge(clk) then
SUMAB <= A + B;
rc <= C;
sum <= SUmAB + rC;
end 1if;
end process;




Timing Optimization: Register Balancing

process (clk, rst) begin
if rising_edge(clk) then

rA <= A;
rB <= B;
rc <= C;

sum <= rA + rB + rgC;
end 1if;
end process;
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Timing Optimization: Register Balancing

>

end process;

process (clk, rst) begin
if rising_edge(clk) then
SUMAB <= A + B;

r¢c <= C;
sum <= SUmMAB + rC;
end if;
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Optimization for Area
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Area Optimization: Resource Sharing

* Rolling up pipleline: share common resources at different
time — a form of temporal computing

dﬂ. stage 1 ——| [—|stage 2 > > eee | [—|stagen

dout

e Block including
. | allalllogicin  |— (- dout
din —» stage 1 to n.

25



Area Optimization: Resource Sharing

e Use registers to hold inputs
* Develop FSM to select which inputs to process in each
cycle.

X=A+B+C+D
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+
B
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Area Optimization: Resource Sharing

e Use registers to hold inputs
* Develop FSM to select which inputs to process in each
cycle.

X=A+B+C+D
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A, B, C, D need to hold
steady until X'is processed -



Area Optimization: Resource Sharing

Top Level Module

Module A
8-bit 8 bi C t 2.5
Me rge du pl icate Counlter . O:;p;; > strol:l:eS
components
together
Module B

Reset

11-bit | 11 bits» Comparator
Counter ==hex 6ff

'y

Comparator PWM 5.5 kHz,

Pulse Width > 0-100% duty

0 to hex 6ff




Area Optimization: Resource Sharing

Merge duplicate
components
together -
reduces a 8-bit
counter

Top Level Module

Module A
8 bits > Comparator 2.5 us
== 255 strobe
Counter Module
¢ Reset
bits 7:0
11 bit Comparator
, Counter == hex 6ff
bits 10:0 *
Module B
11 bits > C
. omparator PWM 5.5 kHz,
Pulse Width S % 0-100% duty
0 to hex 6ff
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Impact of Reset on Area (Xilinx Specific)

Do not set or reset Registers asynchronously.
—  Control set remapping becomes impossible.

— Sequential functionality in device resources such as block RAM components and
DSP blocks can be set or reset synchronously only.

—  You will be unable to leverage device resources resources, or they will be
configured sub-optimally.

— Use synchronous initialization instead.

Do not describe Flip-Flops with both a set and a reset.

—  No Flip-Flop primitives feature both a set and a reset, whether synchronous
or asynchronous.

— If not rejected by the software, Flip-Flop primitives featuring both a set and a
reset may adversely affect area and performance.
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Reset or No Reset?

process (clk) begin
if rising_edge(clk) then
if rst = ‘0’ then
sr <= (others <= ‘0’);
else
sr <= din & sr(14 downto 0);
end if;
end if;
end process;
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Reset or No Reset?
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process (clk) begin
if rising_edge(clk) then
sr <= din & sr(14 downto 0);
end 1if;
end process;
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Reset or No Reset?

Table 2.1 Resource Utilization for Shift Register

Implementations
Implementation Slices slice Flip-flops
Resets defined 9 16

No resets defined 1 1
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Resetting Block RAM

* Block RAM only supports synchronous reset.

* Suppose that Mem is 256x16b RAM.

* Implementations of Mem with synchronous and
asynchronous reset on Xilinx Virtex-4.

Implementation Slices slice Flip-flops 4 Input LUTs BRAMs

Asynchronous reset 3415 4112 2388 0
Synchronous reset 0 0 0 1

VHDL model should match features offered by FPGA building
blocks in order for those devices instantiated in the

iImplementation.
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Utilizing Set/Reset FF Pins
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Utilizing Set/Reset FF Pins — Example

process (clk, reset)

begin
if reset="0’ then
oDat <=‘0’;
else

oDat <= iDat1 | iDat2;
end if;
end process;

| iDat2

| iDat1

| iReset

Figure 2.15
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Simple asynchronous reset.
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36



Utilizing Set/Reset FF Pins — Example

process (clk, reset)
begin

oDat <= iDat1 | iDat2;
end process;

[iClk

| iDat2

| iDat1

Figure 2.16 Optimization without reset.
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Optimization for Power
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Power Reduction Techniques

In general, FPGAs are power hungry.
Power consumption is determined by

szlcj

where V is voltage, C is load capacitance, and fis
switching frequency
In FPGAs, Vis usually fixed, C depends on the number of
switching gates and length of wires connecting all gates.
To reduce power,
* turn off gates not actively used,
* have multiple clock domains,
* reduce f.
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Dual-EdgeTriggered FFs

* A design that is active on both clock edges can reduce

clock frequency by 50%.
Example 1
dﬁ» stage 1 |- stage 2 stage 4 |» stage n

Example 2

din
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negatively triggered
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dout

dout
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Dual-EdgeTriggered FFs — Example

process(clk)
begin
if (rising_edge(clk)) then
reg(0) <= din;
reg(2) <= reg(1);
end if;
end process;

process(clk)
begin
if(rising_edge(clk)) then
reg(1) <= reg(0);
reg(3) <= reg(2);
end if;
end process;

Synthesizable using Vivado 2016.2 41



