
High-Level Synthesis
Xilinx Vivado HLS

Hao Zheng
Comp Sci & Eng

University of South Florida

1

Reading
➜The Zynq Book, chapter 14, 15

➜Vivado Design Suite Tutorial: High-Level
Synthesis

2

3

Overview

High-Level Synthesis www.xilinx.com 14
UG902 (v2014.1) May 30, 2014

Chapter 1: High-Level Synthesis

to and from the cycle accurate RTL implementation f iles. You have no need to interact with
or edit these simulation f iles: the simulation is fully automated.

Report f iles are generated for the results of synthesis, C/RTL cosimulation and IP packaging.

Test bench, Language Support and C Libraries

In any C program the top-level function is called main(). In the Vivado HLS design flow,
any sub-function below the level of main() can be specif ied as the top-level function for
synthesis. The function main() cannot be synthesized.

• Only one function can be selected as the top-level function for synthesis.

• Any sub-functions in the hierarchy below the function marked for synthesis will also be
synthesized.

X-Ref Target - Figure 1-4

Figure 1-4: Vivado HLS Overview

4

5

6

Implementation Considerations
➜Resources / area
➜Throughput
➜Clock frequency
➜Latency
➜Power consumption
➜ I/O requirements

7

Controlled by synthesis
directives

8

9

Native Types
in C/C++

10

Arbitrary Precision – Integer

1 ≤ N ≤ 1024

11

Typical C/C++ Construct to RTL Mapping

5

Typical C/C++ Constructs to RTL Mapping

Operators

Control flows

Scalars

Arrays Memories

Wires or registers

Control logics

Functional units

Functions Modules

Arguments Input/output ports

à

à

à

à

à

à

HW ComponentsC Constructs

Function Hierarchy
➜Each function is synthesized to a RTL module

➜Function inlining eliminates hierarchy
➜ The function main() cannot be synthesized

➜ Used to develop C-testbench

12

Function Hierarchy

� Each function is usually translated into an RTL module
– Functions may be inlined to dissolve their hierarchy

void A() { .. body A .. }
void C() { .. body C .. }
void B() {

C();
}

void TOP() {
A(…);
B(…);

}

TOP

A B
C

Source code RTL hierarchy

6

Function Arguments
➜Function arguments become module ports

➜Interface follows certain protocol to synchronize data
exchange

13

Function Arguments

� Function arguments become ports on the RTL
blocks

• Additional control ports are added to the design

� Input/output (I/O) protocols
– Allow RTL blocks to automatically synchronize data

exchange

TOP

out1in1
in2

Datapath

FSMin1_vld
in2_vld

out1_vld

void TOP(int* in1, int* in2,
int* out1)

{
*out1 = *in1 + *in2;

}

7

Expressions
➜Expressions and operations are synthesized to

datapath components
➜Timing constraints influence the degree of registering

14

� HLS generates datapath circuits mostly from
expressions
– Timing constraints influence the degree of registering

8

Expressions

char A, B, C, D,
int P;

P = (A+B)*C+D

�

+

+

A

B

C

D

P

Arrays
➜An array is typically implemented by a mem block

➜Read & write array -> RAM; Constant array -> ROM
➜ An array can be partitioned and map to multiple RAMs
➜ Multiples arrays can be merged and map to one RAM
➜ An array can be partitioned into individual elements and

map to registers

15

Arrays

� By default, an array in C code is typically implemented
by a memory block in the RTL
– Read & write array -> RAM; Constant array -> ROM

� An array can be partitioned and map to multiple RAMs
� Multiples arrays can be merged and map to one RAM
� An array can be partitioned into individual elements and

map to registers

void TOP(int)
{

int A[N];
for (i = 0; i < N; i++)

A[i+x] = A[i] + i;
}

N-1
N-2
…
1
0

TOP

DOUTDIN
ADDR

CE
WE

RAM

A[N]

A_outA_in

9

Loops
➜By default, loops are rolled

➜Each loop iteration corresponds to a “sequence” of
states (possibly a DAG)

➜This state sequence will be repeated multiple times
based on the loop trip count

16

Loops

� By default, loops are rolled
– Each loop iteration corresponds to a “sequence” of

states (possibly a DAG)
– This state sequence will be repeated multiple times

based on the loop trip count

void TOP (…) {
...
for (i = 0; i < N; i++)

b += a[i];
}

TOP

S1

a[i]
b

10

+LD
S2

Loop Unrolling
➜To expose higher parallelism and achieve shorter

latency
➜Pros

➜Decrease loop overhead
➜Increase parallelism for scheduling
➜Facilitate constant propagation and

array-to-scalar promotion
➜Cons – increase operation count,

which may negatively impact area, power, and timing

17

Loop Unrolling

� Loop unrolling to expose higher
parallelism and achieve shorter
latency
– Pros

• Decrease loop overhead
• Increase parallelism for scheduling
• Facilitate constant propagation and

array-to-scalar promotion
– Cons

• Increase operation count, which may
negatively impact area, power, and
timing

for (int i = 0; i < N; i++)
A[i] = C[i] + D[i];

A[0] = C[0] + D[0];
A[1] = C[1] + D[1];
A[2] = C[2] + D[2];

.....

11

Loop Pipelining
➜ Loop pipelining is one of the most important

optimizations for high-level synthesis
➜ Allows a new iteration to begin processing before the previous

iteration is complete
➜ Key metric: Initiation Interval (II) in # cycles

18

Loop Pipelining

� Loop pipelining is one of the most important optimizations
for high-level synthesis
– Allows a new iteration to begin processing before the previous

iteration is complete
– Key metric: Initiation Interval (II) in # cycles

12

for (i = 0; i < N; ++i)
p[i] = x[i] * y[i];

II = 1ld
ld

ld

� �

�

�

�

�

st
st

st
ld – Load
st – Store

ldld

×

st

x[i] y[i]

p[i]

i=0
i=1
i=2

cycles

ld � � sti=3

19

Synthesis of Loops – Case Study

By default, Vivado intends to optimize area, so loops are rolled

20

Synthesis of Loops – Case Study

21

Merging Loops

22

Merging Loops

23

Interface Synthesis

24

Port Directions

Port Protocols
➜Simple: ap_none, ap_stable, ap_ack
➜Ports with validation: ap_vld, ap_ovld, ap_hs
➜Memory Interface: ap_memory, bram
➜ap_fifo—
➜ap_bus—
➜AXI: axis, s_axilite, m_axi.

25

26

Backup

