High-Level Synthesis

Creating Custom Circuits from High-Level Code

Hao Zheng
Comp Sci & Eng
University of South Florida

Existing Design Flow

- Register-transfer (RT) synthesis
- Specify RT structure (muxes, registers, etc)
- Allows precise specification
- But, time consuming, difficult, error prone

Synthesizable HDL J

¥
RT Synthesis]

!
Netlist| ““““““““““ [Technology Mapping]

[Physical Design] [Placement]

Bitfile | " [Routing)
Omonnnmn
m
FPGA |
=
=

oo

ASIC

mEnEnEn

Existing Design Flow

Performance
! +
FPGA with
RTL
DSP
+ FPGA with
< RTL
<+ °
86 D:P Typical Design Time Limit
f in a Software Project
© GPU
@)
>
@ First working version <= Optimized version Time

X13466

Xilinx: Introduction to FPGA Design with Vivado HLS, 2013

Forthcoming Design Flow

4 N
C/C++, Java, etc. J

|
High-level Synthesi
\[igh-level Synthesis])

Synthesizable HDL J

¥
RT Synthesis]

!
Netlist| ““““““““““ [Technology Mapping]

| Physical Design | [Placement)
Bitfle | [Routing]
OOy om0
= FPGA |5
= =
ASIC - =
= =

oo

Forthcoming Design Flow

Performance
4 4
FPGA with HLS
+
DSP
x86
FPGA -+
with HLS
@)
D:P ____Typical Design Time Limit
ng in a Software Project
GPU
@)
>
O First working version ~ <§= Optimized version Time

X13467

Xilinx: Introduction to FPGA Design with Vivado HLS, 2013

HLS Overview

- Input:
- High-level languages (e.g., C)
- Behavioral hardware description languages (e.g., VHDL)
- State diagrams / logic networks
- Tools:
- Parser
- Library of modules
- Constraints:
- Area constraints (e.g., # modules of a certain type)
- Delay constraints (e.g., set of operations finish in # clock cycles)

- Output — RTL models
- Operation scheduling (time) and binding (resource)
- Control generation and detailed interconnections

High-level Synthesis - Benefits

- Ratio of C to VHDL developers (10000:1 ?)
- Easier to specify complex functions
- Technology/architecture independent designs

- Manual HW design potentially slower
- Similar to assembly code era
- Programmers used to beat compiler
- But, no longer the case

- Ease of HW/SW partitioning

->enhance overall system efficiency

- More efficient verification and validation
- Easier to V & V of high-level code

High-level Synthesis

- More challenging than SW compilation
- Compilation maps behavior into assembly instructions
- Architecture is known to compiler

- HLS creates a custom architecture to execute
specified behavior
->Huge hardware exploration space
- Best solution may include microprocessors
- |deally, should handle any high-level code

- But, not all code appropriate for hardware

High-level Synthesis: An Example

- First, consider how to manually convert high-level
code into circuit

acc = 0;
for (i=0; i < 128; i++)
acc += ali]; ~

- Steps
1) Build FSM for controller
2) Build datapath based on FSM

A Manual Example

- Build a FSMD
?ocrc(i==(());; | < 128; i++) @
acc += al[i]; \

Qix 128

10

A Manual Example — Cont’d

- Combine controller + datapath

Start In from memory

l

acc = 0;

Memory address
11

Done Memory Read for (i=0; i < 128; i++) J
acc

acc += ali];

High-Level Synthesis — Overview

acc = 0;
for (i=0; i < 128; i++)
acc += a[i];

|

High-Level Synthesis]

l In from memory

Done Memory Read
acc Memory address

12

A Manual Example - Optimization

- Alternatives

- Use one adder (plus muxes)

AW

In from memory

MUX

!

' |

acc

ali] addr

~\ T

MUX

MUX

.

/

acc

Memory address
13

A Manual Example — Summary

- Comparison with high-level synthesis
- Determining when to perform each operation
=> Scheduling

- Allocating resource for each operation
=> Resource allocation

- Mapping operations to allocated resources
=> Binding

14

High-Level Synthesis

high-level code J

Could be C, C++, Java,

/Perl, Python, SystemC,
ImpulseC, etc.

| High-Level Synthesis |

|
Custom Circuit J

Usually a RT VHDL/Verilog
description, but could as

low level as a bit file for
FPGA, or a gate netlist.

15

Main Steps

Front-end

.
o

High-level Code J

\ 4

[Syntactic Analysis]

Intermediate
Representation

v

[Optimization]

A 4

‘‘‘‘‘‘‘‘ [Scheduling/Resource Allocation]

Back-end

\ 4

Converts code to intermediate
representation - allows all following
steps to use language independent
v format.

Determines when each operation will
execute, and resources used

..................... [Binding/Resource Sharing] Maps operations onto physical resources

.,

A 4

Cycle accurate RTL code

16

Parsing & Syntactic Analysis

17

Syntactic Analysis

- Definition: Analysis of code to verify syntactic
correctness
- Converts code into intermediate representation

- Steps: similar to SW compilation
1) Lexical analysis (Lexing)
2) Parsing
3) Code generation — intermediate representation

High-level CodeJ

. [—]
[Syntactic Analysis] l
...................................... [Parsing

Intermediate [
Representation

Intermediate Representation

- Parser converts an input program to intermediate
representation

- Why use intermediate representation?

- Easier to analyze/optimize than source code

- Theoretically can be used for all languages
- Makes synthesis back end language independent

C Code J Java J Perl J

[Syntacti::AnaIysis] [Syntacti;AnaIysis] [SyntactiZ:AnaIysis]

\

Intermediate

Scheduling, resource

Representation allocation, binding,
independent of source
language - sometimes

[Sl e] optimizations too

19

Intermediate Representation

- Different Types
- Abstract Syntax Tree
- Control/Data Flow Graph (CDFG)
- Sequencing Graph

- We will focus on CDFG

- Combines control flow graph (CFG) and data flow
graph (DFG)

-»CFG ---> controller

-»DFG ---> datapath

20

Control Flow Graphs (CFGs)

- Represents control flow dependencies of basic

blocks

- A basic block is a section of code that always
executes from beginning to end

> |.e. no jumps into or out of block, nor branching

acc = 0;
for (i=0; i < 128; i++)
acc += a[i];

J

M

i <1287
ves no

21

Control Flow Graphs: Your Turn

- Find a CFG for the following code.

i =0;
while (i < 10) {
if (x <5)
y =2;
else if (z < 10)
y =6;
i++;

; 7

Data Flow Graphs

- Represents data dependencies between
operations within a single basic block

23

Control/Data Flow Graph

- Combines CFG and DFG
- Maintains DFG for each node of CFG

acc =0;
for (i=0; i < 128; i++)
acc+=ali, |

acc=0; i=0;

—~

_____ if (i < 128)

g

24

Transformation/Optimization

25

Synthesis Optimizations

- After creating CDFG, HLS optimizes it with the
following goals

->Reduce area
->Reduce latency
= Increase parallelism

- Reduce power/energy

- 2 types of optimizations
- Data flow optimizations
- Control flow optimizations

26

Data Flow Optimizations

- Tree-height reduction

- Generally made possible from commutativity, associativity, and distributivity

x=a+b+c+d

a b c d
N 7 /
\+
\+

a b

N
+/+

a b C d
t NN\ S
+ \+/ +

:> a\+,/b C\.*/d

N

27

Data Flow Optimizations

- Operator Strength Reduction

- Replacing an expensive (“strong”) operation with a faster one
- Common example: replacing multiply/divide with shift

1 multiplication 0 multiplications
b[i] = alil * 8;]

bl[i] = a[i] << B;J

a=b*s;, | M) |c=b<<2
' a=b+c
c=b << 2

a=b*13 J ::> d=b<<3;
a=c+d+b;

4

Data Flow Optimizations

- Constant propagation

- Statically evaluate expressions with constants

X=0;
y=x*15;
z=vy+10;

—

29

Data Flow Optimizations

- Function Specialization
- Create specialized code for common inputs

- Treat common inputs as constants

= If inputs not known statically, must include if statement for

each call to specialized function

int f (int x) {
y =x *15;
return y + 10;

}

Treat
frequent
input as a
constant

.

for (1=M00; I++)
f(0);

14

—)>

int f (int x) { int f_opt () {
y = x * 15; return 10;
return y + 10; }
by
4 4

for (I=0; I < 1000; I++)
f_opt();

)

Data Flow Optimizations

- Common sub-expression elimination

- |f expression appears more than once, repetitions can

be replaced

b=c*25+x+y;

=

—

X + y already determined

31

Data Flow Optimizations

- Dead code elimination

->Remove code that is never executed
- May seem like stupid code, but often comes from constant
propagation or function specialization

int f (int x) { int f_opt () {
a=b*15; return a;
else by
a=b/4 4
return a;
¥ 7 Specialized version for x > 0

does not need else branch -
“dead code”

Data Flow Optimizations

- Code motion (hoisting/sinking)

- Avoid same repeated computation

for (1=0; | < 100; 1++) {

> Z=X+Y;
b[i] = a[i] +z;

}

— loop independent

—)>

Z=X+Y;

for (I=0; | < 100; 1++) {
b[i] = a[i] +z;

}

4

33

Control Flow Optimizations

- Loop Unrolling

- Replicate body of loop
- May increase parallelism

for (i=0; i < 128; i++)
ali] = bli] + c[i];

—)

for (i=0; i < 128; i+=2) {
ali] = b[i] + c[i];

ali+1] = b[i+1] + c[i+1]

}

4

34

Control Flow Optimizations

- Function inlining — replace function call with body

of function

- Common for both SW and HW

- SW: Eliminates function call instructions
->HW: Eliminates unnecessary control states

for (i=0; i < 128; i++)
ali] = f(b[i], c[i]);

int f (int a, int b) {
returna+ b * 15;

}

4

—)

for (i=0; i < 128; i++)
a[i] = b[i] + c[i] * 15;

J

35

Control Flow Optimizations

- Conditional Expansion — replace if with logic
expression

- Execute if/else bodies in parallel

y =ab
if (a) _
y =ab
X = b+d > x = a(b+d) + a’bd J
else [DeMicheli]
X = bd p ﬂ

Can be further optimized to:

y =ab
X =V + d(a+b)

36

Example

- Optimize this

X=0;
y=a+b;

if (x < 15)
Zz=a+b-c;
else

z=X+12;
output =z * 12;

37

Scheduling/Resource Allocation

38

Scheduling

- Scheduling assigns a start time to each operation
In DFG
- Start times must not violate dependencies in DFG
- Start times must meet performance constraints

+ Alternatively, resource constraints

« Performed on the DFG of each CFG node

- Cannot execute multiple CFG nodes in parallel

39

Scheduling — Examples

40

Scheduling Problems

- Several types of scheduling problems
- Usually some combination of performance and resource constraints

- Problems:
- Unconstrained
- Not very useful, every schedule is valid
- Minimum latency
- Latency constrained

- Mininum-latency, resource constrained

- i.e. find the schedule with the shortest latency, that uses less than a
specified # of resources

- NP-Complete

- Mininum-resource, latency constrained

- i.e. find the schedule that meets the latency constraint (which may be
anything), and uses the minimum # of resources

- NP-Complete

41

Minimum Latency Scheduling

- ASAP (as soon as possible) algorithm

- Find a candidate node

- Candidate is a node whose predecessors have been scheduled and completed (or
has no predecessors)

- Schedule node one cycle later than max cycle of predecessor
- Repeat until all nodes scheduled

e f g h

a b C d
\/ \/ N / N

- <

.................... AN i a—

Cycle1
Cycle2

Minimum possible latency - 4 cycles

42

Minimum Latency Scheduling

- ALAP (as late as possible) algorithm

- Run ASAP, get minimum latency L
- Find a candidate
- Candidate is node whose successors are scheduled (or has none)

- Schedule node one cycle before min cycle of successor
- Nodes with no successors scheduled to cycle L

- Repeat until all nodes scheduled

a b C d
\+/ \+/

Cycle1

L =4 cycles

43

Latency-Constrained Scheduling

- Instead of finding the minimum latency, find
latency less than L

- Solutions:

- Use ASAP, verify that minimum latency <= L.

- Use ALAP starting with cycle L instead of minimum
latency (don’ t need ASAP)

44

Scheduling with Resource Constraints

- Schedule must use less than specified number of
resources

Constraints: 1 ALU (+/-), 1 Multiplier

45

Scheduling with Resource Constraints

- Schedule must use less than specified number of
resources

Constraints: 2 ALU (+/-), 1 Multiplier

46

Minimum-Latency, Resource-Constrained
Scheduling

- Definition: Given resource constraints, find
schedule that has the minimum latency

-»Example:

Constraints: 1 ALU (+/-), 1 Multiplier

\ / /
\ /
o ., o A
R 3
: ,
- :

03 . e “ .
...... "Eaaagamans®
............. \ / . \

.............. N B
. 0
L
+ 3 b
: .
; 3
3
3 (4 - .
''''' L Les®
IIIIIIIIIII "samamnnn®
.............
. .
. .
R .
R
1]
‘0
.
.....IIIIII.‘

47

Minimum-Latency, Resource-Constrained
Scheduling

- Definition: Given resource constraints, find
schedule that has the minimum latency

-»Example:

Constraints: 1 ALU (+/-), 1 Multiplier

48

Minimum-Latency, Resource-Constrained
Scheduling

- Definition: Given resource constraints, find
schedule that has the minimum latency

-»Example:

Constraints: 1 ALU (+/-), 1 Multiplier

49

Binding/Resource Sharing

50

Binding

- During scheduling, we determine:
->When operations will execute

->How many resources are needed

- We still need to decide which operations execute
on which resources — binding

= |f multiple operations use the same resource, we need
to decide how resources are shared -resource sharing.

51

Binding

- Map operations onto resources such that
operations in same cycle do not use same
resource

2 ALUs (+/-), 2 Multipliers

Z /\g‘\lz / \ /
Cycle1 1 @\ 2\ (+ /%@M

oz) ////é@) O

Cycle3 5 V ‘

Cycle4 V%@7

Mult1 ALUY ALU2 Mult2

52

Binding

- Many possibilities

- Bad binding may increase resources, require huge steering
logic, reduce clock, etc.

2 ALUs (+/-), 2 Multipliers

Cycle1

Cycle2

Cycle3d

£
Cycle4 \\8‘\@}(

Mult1 ALU1 Mult2 ALU2

Binding

- Cannot do this

- 1 resource can’ t perform multiple ops simultaneously!

2 ALUs (+/-), 2 Multipliers

/ \ /
Cycle1 1 @\

Cycle2 4@ 4(-)

Cycle3d \:G): /

7 7
Cycle4 \53‘@

Translation to Datapath

el o 28 /68 /S \/
ez \gQ)| 6D OV

Cycle3 \(* l\ //
Cycle4d I \\\‘&G—{/

1) Add resources and

a b ch dei g e f registers
‘ 1 1 | lll Ul 2) Add mux for each input
Mux | | Mux Mux | | Mux 3) Add input to left mux for
t : : h left input in DFG
Mult(1,5) ALU(2,7,8,4) Mult(6) ALU(3) each left input in
] ¥ ! ! 4) Do same for right mux
Reg Reg Reg Reg 5) If only 1 input, remove
'I . I I | y p)

mux
55

Summary

56

Main Steps

- Front-end (lexing/parsing) converts code into
intermediate representation — CDFG

- Scheduling assigns a start time for each operation in DFG

- CFG node start times defined by control dependencies
- Resource allocation determined by schedule

- Binding maps scheduled operations onto physical
resources
- Determines how resources are shared

- Big picture:
- Scheduled/Bound DFG can be translated into a datapath
- CFG can be translated to a controller

- High-level synthesis can create a custom circuit for any CDFG!
57

Limitations

- Task-level parallelism

- Parallelism in CDFG limited to individual control states
- Cannot have multiple states executing concurrently

- Potential solution: use model other than CDFG

- Kahn Process Networks
- Nodes represents parallel processes/tasks
- Edges represent communication between processes

- High-level synthesis can create a controller+datapath for each
process

- Must also consider communication buffers
- Challenge:

- Most high-level code does not have explicit parallelism
- Difficult/impossible to extract task-level parallelism from code

58

Limitations

- Coding practices limit circuit performance

- Very often, languages contain constructs not appropriate
for circuit implementation
- Recursion, pointers, virtual functions, etc.

- Potential solution: use specialized languages
- Remove problematic constructs, add task-level parallelism

- Challenge:
- Difficult to learn new languages
- Many designers resist changes to tool flow

59

Limitations

- Expert designers can achieve better circuits

- High-level synthesis has to work with specification in code

- Can be difficult to automatically create efficient pipeline
- May require dozens of optimizations applied in a particular order

- Expert designer can transform algorithm
- Synthesis can transform code, but can’ t change algorithm

- Potential Solution: 7?7
- New language?
- New methodology?
- New tools?

60

Vivado HLS Highlights

61

Overview

Test <:>
cenet Constraints/
SystemC Directives

T Eee—
. rl

Vivado HLS

o 3
aged IP

Sanlanl

Vivado Sys Gen XPS

62

Typical C/C++ Construct to RTL Mapping

C Constructs

Functions
Arguments

Operators
Scalars

Arrays

Control flows

2000 20 R 7

HW Components

Modules
Input/output ports
Functional units

Wires or registers
Memories

Control logics

63

Function Hierarchy

- Each function is synthesized to a RTL module
= Function inlining eliminates hierarchy

- The function main() cannot be synthesized
- Used to develop C-testbench

Source code
void A() {.. body A ..}

RTL hierarchy

void C({ .. body C .. } TOP
void B() {

C0; :: > A
} u u
void TOP() {

A(..);

B(...);

64

Function Arguments

- Function arguments become module ports

- Interface follows certain protocol to synchronize data

exchange

void TOP(@int* in1, int* in2,
int* outl)

{
}

*outl = *inl + *in2;

inl
in2

inl _vldT
in2 vld-

TOP

—
—

Datapath

+. 2

— > FSM —>
—

> outl

> outl_vld

65

Expressions

- Expressions and operations are synthesized to

datapath

- Timing constraints influence the degree of registering

char A, B, C, D,
int P;

= (A+B)*C+D

=

A—

J@WT g
[C) ?—P

66

Arrays

- By default, an array in C code is typically
implemented by a memory block in the RTL
->Read & write array -> RAM; Constant array -> ROM

- An array can be partitioned and map to multiple RAMs

- Multiples arrays can be merged and map to one RAM

- An array can be partitioned into individual elements and
map to registers

A[N
void TOP(int) 1\[Hl TOP
{

N-2 RAM
int A[N]; :> :> A_in—3DIN DOUT—>A_out
for i=0;i<N;i++) | | —>ADDR

} Ali+x] = A[i] + i; =

Ol

67

Loops

- By default, loops are rolled

- Each loop iteration corresponds to a “sequence” of
states (possibly a DAG)

- This state sequence will be repeated multiple times
based on the loop trip count

void TOP (...) { TOP l

S,
for (1=0;1<N; i++) jl> J—>b 1
b += alil; Lo) ali] P

}

68

Loop Unrolling

- Loop unrolling to expose
higher parallelism and achieve
shorter latency

- Pros
->Decrease loop overhead
-Increase parallelism for scheduling
- Facilitate constant propagation and
array-to-scalar promotion
- Cons — increase operation count,
which may negatively impact
area, power, and timing

for (inti=0;i< N; i++)
Ali] = Cl[i] + DIiJ;

.

Alo0] = C[o0] + DIo];
A[1] = C[1] + DI1J;
Al2] = C[2] + D[2];

69

Loop Pipelining

- Loop pipelining is one of the most important

optimizations for high-level synthesis
- Allows a new iteration to begin processing before the previous
iteration is complete
- Key metric: Initiation Interval (ll) in # cycles
x[i] ylil

for (i=0; i< N; ++i)
pli = x1] * yiil;

© R e
©

i— id I A st =1
F =1 Nd XX st
plil L= Id| < X st
ld - Load Lo Id XX st K
st — Store A

S v ; 70

