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Existing Design Flow
➜ Register-transfer (RT) synthesis

➜ Specify RT structure (muxes, registers, etc)
➜ Allows precise specification
➜ But, time consuming, difficult, error prone

Synthesizable HDL

Netlist

Bitfile

ProcessorFPGA

RT Synthesis

Physical Design

Technology Mapping

Placement

Routing

ASIC
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Existing Design Flow
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Programming Model

Historically, the programming model of an FPGA was centered on register-transfer level 
(RTL) descriptions instead of C/C++. Although this model of design capture is completely 
compatible with ASIC design, it is analogous to assembly language programming in 
software engineering. Figure 1-1 shows a traditional FPGA design flow with RTL as the 
design capture method, which illustrates how the programming model difference affects 
implementation time and achievable performance for different computation platforms.

As shown in Figure 1-1, arriving at an initial working version of a software program occurs 
relatively quickly in the project design cycle for both standard and specialized processors. 
After the initial working version, additional development effort must be allotted to achieve 
maximum performance on any implementation platform. 

This f igure also shows the time it takes to develop the same software application for an 
FPGA platform. Both the initial and optimized versions of an application provide signif icant 
performance when compared against the same stages for both standard and specialized 
processors. RTL coding and an FPGA optimized application result in the highest 
performance implementation.

However, the development time required to arrive at this implementation is beyond the 
scope of a typical software development effort. Therefore, FPGAs were traditionally used 
only for those applications requiring a performance profile that could not be achieved by 
any other means, such as designs with multiple processors.

X-Ref Target - Figure 1-1

Figure 1-1: Design Time vs. Application Performance with RTL Design Entry
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Forthcoming Design Flow

HDL

Netlist

Bitfile

ProcessorFPGA

RT Synthesis

Physical Design

Technology Mapping

Placement

Routing

High-level Synthesis

C/C++, Java, etc.

Synthesizable HDL

ASIC
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Forthcoming Design Flow
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Guide Organization

Recent technological advances by Xilinx® remove the difference in programming models 
between a processor and an FPGA. Just as there are compilers from C and other high-level 
languages to different processor architectures, the Xilinx Vivado® High-Level Synthesis 
(HLS) compiler provides the same functionality for C/C++ programs targeted to Xilinx 
FPGAs. Figure 1-2 compares the result of the HLS compiler against other processor 
solutions available to a software engineer.

Guide Organization
There is a signif icant difference between the performance of an FPGA and other processors 
for the same C/C++ application. The following chapters in this guide describe the reasons 
behind this dramatic performance difference and introduce how the Vivado HLS compiler 
works.

Chapter 2: What is an FPGA?
Chapter 2, What is an FPGA? introduces the computational elements available in an FPGA 
and how they compare to a processor. It covers topics such as FPGA memory hierarchy, 
logic elements, and how these elements interrelate.

Chapter 3: Basic Concepts of Hardware Design
The difference between the hardware of a processor and an FPGA affects how a compiler for 
each target works. Chapter 3, Basic Concepts of Hardware Design covers fundamental 

X-Ref Target - Figure 1-2

Figure 1-2: Design Time vs. Application Performance with Vivado HLS Compiler
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HLS Overview
➜ Input:

➜ High-level languages (e.g., C)
➜ Behavioral hardware description languages (e.g., VHDL) 
➜ State diagrams / logic networks 

➜ Tools:
➜ Parser
➜ Library of modules 

➜ Constraints: 
➜ Area constraints (e.g., # modules of a certain type) 
➜ Delay constraints (e.g., set of operations finish in # clock cycles) 

➜ Output – RTL models
➜ Operation scheduling (time) and binding (resource)
➜ Control generation and detailed interconnections 
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High-level Synthesis - Benefits
➜Ratio of C to VHDL developers (10000:1 ?)
➜Easier to specify complex functions
➜Technology/architecture independent designs
➜Manual HW design potentially slower

➜Similar to assembly code era
➜Programmers used to beat compiler
➜But, no longer the case

➜Ease of HW/SW partitioning
➜enhance overall system efficiency

➜More efficient verification and validation
➜Easier to V & V of high-level code

7



High-level Synthesis
➜More challenging than SW compilation

➜Compilation maps behavior into assembly instructions
➜Architecture is known to compiler

➜HLS creates a custom architecture to execute 
specified behavior
➜Huge hardware exploration space
➜Best solution may include microprocessors
➜Ideally, should handle any high-level code

➜ But, not all code appropriate for hardware

8



High-level Synthesis: An Example

➜First, consider how to manually convert high-level 
code into circuit

➜Steps
1) Build FSM for controller
2) Build datapath based on FSM

acc = 0;
for (i=0; i < 128; i++) 

acc += a[i];

9



A Manual Example

➜Build a FSMD

acc = 0;
for (i=0; i < 128; i++) 

acc += a[i];
acc=0, i = 0

load a[i]

acc += a[i]

i++

Done <= 1

i < 128 i >= 128
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A Manual Example – Cont’d

➜Combine controller + datapath

acci

< 

addra[i]

++ +

1 128

2x1

0

2x1

0

1

2x1

&a

In from memory

Memory addressacc
Done Memory Read

Controller

acc = 0;
for (i=0; i < 128; i++) 

acc += a[i];

Start

MUX MUX MUX
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High-Level Synthesis – Overview 

High-Level Synthesis

acc = 0;
for (i=0; i < 128; i++) 

acc += a[i];

acci

< 

addra[i]

++ +
1 128

2x1

0
2x1

0

1

2x1

&a

In from memory

Memory addressacc
Done Memory Read

Controller
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A Manual Example - Optimization

➜Alternatives
➜Use one adder (plus muxes)

acci

< 

addra[i]

+

128

2x1

0

2x1

0

1

2x1

&a

In from memory

Memory addressacc

MUX MUX

MUX MUX MUX
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A Manual Example – Summary 

➜Comparison with high-level synthesis
➜Determining when to perform each operation

=> Scheduling
➜Allocating resource for each operation

=> Resource allocation
➜Mapping operations to allocated resources

=> Binding

14



High-Level Synthesis

High-Level Synthesis

Could be C, C++, Java, 
Perl, Python, SystemC, 
ImpulseC, etc. 

Usually a RT VHDL/Verilog 
description, but could as 
low level as a bit file for 
FPGA, or a gate netlist.

high-level code

Custom Circuit
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Main Steps

Syntactic Analysis

Optimization

Scheduling/Resource Allocation

Binding/Resource Sharing

High-level Code

Intermediate 
Representation

Cycle accurate RTL code

Converts code to intermediate 
representation - allows all following 
steps to use language independent 
format.

Determines when each operation will 
execute, and resources used

Maps operations onto physical resources

Front-end

Back-end
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Parsing & Syntactic Analysis
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Syntactic Analysis

• Definition: Analysis of code to verify syntactic 
correctness
- Converts code into intermediate representation

• Steps: similar to SW compilation
1) Lexical analysis (Lexing)
2) Parsing
3) Code generation – intermediate representation

Syntactic Analysis

High-level Code

Intermediate 
Representation

Lexical Analysis

Parsing
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Intermediate Representation
➜ Parser converts an input program to intermediate 

representation
➜ Why use intermediate representation?

➜Easier to analyze/optimize than source code
➜ Theoretically can be used for all languages

➜ Makes synthesis back end language independent

Syntactic Analysis

C Code

Intermediate 
Representation

Syntactic Analysis

Java

Syntactic Analysis

Perl

Back End

Scheduling, resource 
allocation, binding, 
independent of source 
language - sometimes 
optimizations too
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Intermediate Representation

➜Different Types
➜Abstract Syntax Tree 
➜Control/Data Flow Graph (CDFG)
➜Sequencing Graph

➜We will focus on CDFG
➜Combines control flow graph (CFG) and data flow 

graph (DFG)
➜CFG ---> controller
➜DFG ---> datapath

20



Control Flow Graphs (CFGs)
➜Represents control flow dependencies of basic 

blocks
➜A basic block is a section of code that always 

executes from beginning to end
➜ I.e. no jumps into or out of block, nor branching

acc = 0;
for (i=0; i < 128; i++) 

acc += a[i];
i < 128?

acc=0, i = 0

acc += a[i]
i ++

Done

yes no

21



Control Flow Graphs: Your Turn

• Find a CFG for the following code.

22

i = 0;
while (i < 10) {

if (x < 5)
y = 2;

else if (z < 10)
y = 6;

i++;
}



Data Flow Graphs

➜Represents data dependencies between 
operations within a single basic block

x = a+b;
y = c*d;
z = x - y; 

+ *

-

a b c d

x z y
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Control/Data Flow Graph

➜Combines CFG and DFG
➜Maintains DFG for each node of CFG

24

acc = 0;
for (i=0; i < 128; i++) 

acc += a[i];

if (i < 128)

acc=0; i=0;

acc += a[i]
i ++

Done

acc

0

i

0

+

acc a[i]

acc

+

i 1

i



Transformation/Optimization
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Synthesis Optimizations

➜After creating CDFG, HLS optimizes it with the 
following goals
➜Reduce area
➜Reduce latency
➜Increase parallelism
➜Reduce power/energy

➜2 types of optimizations
➜Data flow optimizations
➜Control flow optimizations

26



➜Tree-height reduction
➜ Generally made possible from commutativity, associativity, and distributivity

Data Flow Optimizations

+

+

+

+ +

+

a b c d
a b c d

+
+

*

a b c d

+ *

+

a b c d

x = a + b + c + d
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Data Flow Optimizations

➜Operator Strength Reduction
➜ Replacing an expensive (�strong�) operation with a faster one
➜ Common example: replacing multiply/divide with shift

b[i] = a[i] * 8; b[i] = a[i] << 3;

a = b * 5; c = b << 2;
a = b + c;

1 multiplication 0 multiplications

a = b * 13;
c = b << 2;
d = b << 3;
a = c + d + b;

28



Data Flow Optimizations

• Constant propagation
- Statically evaluate expressions with constants

29

x = 0;
y = x * 15;
z = y + 10;

x = 0;
y = 0;
z = 10;



➜Function Specialization
➜Create specialized code for common inputs

➜ Treat common inputs as constants
➜ If inputs not known statically, must include if statement for 

each call to specialized function

Data Flow Optimizations

int f (int x) {
y = x * 15;
return  y + 10;

}

for (I=0; I < 1000; I++)
f(0);
…

}

int f_opt () {
return 10;

}

for (I=0; I < 1000; I++)
f_opt();
…

}

Treat 
frequent 
input as a 
constant 

int f (int x) {
y = x * 15;
return  y + 10;

}

30



Data Flow Optimizations

➜Common sub-expression elimination
➜If expression appears more than once, repetitions can 

be replaced

a = x + y;
. . . . . .
. . . . . .
b = c * 25 + x + y;

a = x + y;
. . . . . .
. . . . . .
b = c * 25 + a;

x + y already determined

31



Data Flow Optimizations

➜Dead code elimination
➜Remove code that is never executed

➜ May seem like stupid code, but often comes from constant 
propagation or function specialization

int f (int x) {
if (x > 0 )

a = b * 15;
else

a = b / 4;
return  a;

}

int f_opt () {
a = b * 15;
return  a;

}

Specialized version for x > 0 
does not need else branch -
�dead code�

32



Data Flow Optimizations

➜Code motion (hoisting/sinking)
➜Avoid same repeated computation

for (I=0; I < 100; I++) {
z = x + y;
b[i] = a[i] + z ;

}

z = x + y;
for (I=0; I < 100; I++) {

b[i] = a[i] + z ;
}

loop independent

33



Control Flow Optimizations

➜Loop Unrolling
➜Replicate body of loop

➜ May increase parallelism

for (i=0; i < 128; i++) 
a[i] = b[i] + c[i];

for (i=0; i < 128; i+=2) { 
a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1]

}

34



Control Flow Optimizations

➜Function inlining – replace function call with body 

of function

➜Common for both SW and HW

➜SW: Eliminates function call instructions

➜HW: Eliminates unnecessary control states

for (i=0; i < 128; i++) 

a[i] = f( b[i], c[i] );

. . . .

int f (int a, int b) {

return a + b * 15;

}

for (i=0; i < 128; i++) 

a[i] = b[i] + c[i] * 15;

35



➜Conditional Expansion – replace if with logic 
expression
➜Execute if/else bodies in parallel

Control Flow Optimizations

y = ab
if (a)

x = b+d
else

x = bd

y = ab
x = a(b+d) + a’bd

y = ab
x = y + d(a+b)

[DeMicheli]

Can be further optimized to:

36



Example

➜Optimize this

x = 0;
y = a + b;
if (x < 15)

z = a + b - c;
else

z = x + 12;
output = z * 12;

37



Scheduling/Resource Allocation
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Scheduling

• Scheduling assigns a start time to each operation 
in DFG
- Start times must not violate dependencies in DFG
- Start times must meet performance constraints

+ Alternatively, resource constraints

• Performed on the DFG of each CFG node
- Cannot execute multiple CFG nodes in parallel

39



Scheduling – Examples

+

+

+

+ +

+

a b c d
a b c d

+ +

+

a b c d

Cycle1

Cycle2

Cycle3
Cycle3

Cycle1 Cycle2

Cycle1

Cycle2

40



Scheduling Problems
➜ Several types of scheduling problems

➜ Usually some combination of performance and resource constraints
➜ Problems:

➜ Unconstrained
➜ Not very useful, every schedule is valid

➜ Minimum latency
➜ Latency constrained
➜ Mininum-latency, resource constrained

➜ i.e. find the schedule with the shortest latency, that uses less than a 
specified # of resources

➜ NP-Complete
➜ Mininum-resource, latency constrained

➜ i.e. find the schedule that meets the latency constraint (which may be 
anything), and uses the minimum # of resources

➜ NP-Complete

41



Minimum Latency Scheduling
➜ ASAP (as soon as possible) algorithm

➜ Find a candidate node
➜ Candidate is a node whose predecessors have been scheduled and completed (or 

has no predecessors)
➜ Schedule node one cycle later than max cycle of predecessor
➜ Repeat until all nodes scheduled

+ +

*

a b c d

*

- <

e f g h

Cycle1

Cycle2

Cycle3

+Cycle4

Minimum possible latency - 4 cycles 
42



Minimum Latency Scheduling
➜ ALAP (as late as possible) algorithm

➜ Run ASAP, get minimum latency L 
➜ Find a candidate

➜ Candidate is node whose successors are scheduled (or has none)
➜ Schedule node one cycle before min cycle of successor

➜ Nodes with no successors scheduled to cycle L
➜ Repeat until all nodes scheduled

+ +

*

a b c d

* -

<

e f g h

Cycle1

Cycle2

Cycle3

+Cycle4

L = 4 cycles 
43



Latency-Constrained Scheduling

➜ Instead of finding the minimum latency, find 
latency less than L

➜Solutions:
➜Use ASAP, verify that minimum latency <= L.
➜Use ALAP starting with cycle L instead of minimum 

latency (don�t need ASAP)

44



Scheduling with Resource Constraints

➜Schedule must use less than specified number of 
resources

+

*

a b c d

+

-

e f g

Cycle1

Cycle3

Cycle4
+Cycle5

+
*

Cycle2

Constraints: 1 ALU (+/-), 1 Multiplier
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Scheduling with Resource Constraints

➜Schedule must use less than specified number of 
resources

+ +

*

a b c d

+

-

e f g

Cycle1

Cycle2

Cycle3
+Cycle4

*

Constraints: 2 ALU (+/-), 1 Multiplier
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➜Definition: Given resource constraints, find 
schedule that has the minimum latency
➜Example:

Minimum-Latency, Resource-Constrained 
Scheduling

a b c d e f g

+ +

Constraints: 1 ALU (+/-), 1 Multiplier

+

-

*

+
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➜Definition: Given resource constraints, find 
schedule that has the minimum latency
➜Example:

Minimum-Latency, Resource-Constrained 
Scheduling

a b c d e f g

+ +

Constraints: 1 ALU (+/-), 1 Multiplier

+

-

*

+
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➜Definition: Given resource constraints, find 
schedule that has the minimum latency
➜Example:

Minimum-Latency, Resource-Constrained 
Scheduling

a b c d e f g

+ +

Constraints: 1 ALU (+/-), 1 Multiplier

+

-

*

+
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Binding/Resource Sharing
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Binding

➜During scheduling, we determine:
➜When operations will execute
➜How many resources are needed

➜We still need to decide which operations execute 
on which resources – binding
➜If multiple operations use the same resource, we need 

to decide how resources are shared -resource sharing.

51



Binding

➜Map operations onto resources such that 
operations in same cycle do not use same 
resource

* + +

**

+

-

-

1 2 3

45 6

7
8

Cycle1

Cycle2

Cycle3

Cycle4

2 ALUs (+/-), 2 Multipliers

Mult1 ALU1 ALU2 Mult2
52



Binding

➜Many possibilities
➜ Bad binding may increase resources, require huge steering 

logic, reduce clock, etc.

* + +

**

+

-

-

1 2 3

45 6

7
8

Cycle1

Cycle2

Cycle3

Cycle4

2 ALUs (+/-), 2 Multipliers

Mult1 ALU1 ALU2Mult2
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Binding

➜Cannot do this
➜ 1 resource can�t perform multiple ops simultaneously!

* + +

**

+

-

-

1 2 3

45 6

7
8

Cycle1

Cycle2

Cycle3

Cycle4

2 ALUs (+/-), 2 Multipliers
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Translation to Datapath

* + +

**

+

-

-

1 2 3

4
5 6

7
8

Cycle1

Cycle2

Cycle3

Cycle4

Mult(1,5) Mult(6)ALU(2,7,8,4) ALU(3)

Mux Mux

Reg

Mux Mux

a b c h

Reg RegReg

a b c d e f g h i

d e i g e f

1) Add resources and 
registers

2) Add mux for each input

3) Add input to left mux for 
each left input in DFG

4) Do same for right mux

5) If only 1 input, remove 
mux
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Summary
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Main Steps
➜ Front-end (lexing/parsing) converts code into 

intermediate representation – CDFG
➜ Scheduling assigns a start time for each operation in DFG

➜ CFG node start times defined by control dependencies
➜ Resource allocation determined by schedule

➜ Binding maps scheduled operations onto physical 
resources
➜ Determines how resources are shared

➜ Big picture:
➜ Scheduled/Bound DFG can be translated into a datapath
➜ CFG can be translated to a controller
➜ High-level synthesis can create a custom circuit for any CDFG!
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Limitations
➜ Task-level parallelism

➜Parallelism in CDFG limited to individual control states
➜Cannot have multiple states executing concurrently

➜Potential solution: use model other than CDFG
➜Kahn Process Networks

➜ Nodes represents parallel processes/tasks
➜ Edges represent communication between processes

➜High-level synthesis can create a controller+datapath for each 
process
➜ Must also consider communication buffers

➜Challenge: 
➜Most high-level code does not have explicit parallelism

➜ Difficult/impossible to extract task-level parallelism from code
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Limitations
➜ Coding practices limit circuit performance

➜Very often, languages contain constructs not appropriate 
for circuit implementation
➜Recursion, pointers, virtual functions, etc.

➜ Potential solution: use specialized languages
➜Remove problematic constructs, add task-level parallelism

➜ Challenge:
➜Difficult to learn new languages
➜Many designers resist changes to tool flow
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Limitations
➜ Expert designers can achieve better circuits

➜High-level synthesis has to work with specification in code
➜Can be difficult to automatically create efficient pipeline
➜May require dozens of optimizations applied in a particular order

➜Expert designer can transform algorithm
➜Synthesis can transform code, but can�t change algorithm

➜ Potential Solution: ???
➜New language?
➜New methodology?
➜New tools?

60
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Overview

High-Level Synthesis www.xilinx.com 14
UG902 (v2014.1) May 30, 2014

Chapter 1: High-Level Synthesis

to and from the cycle accurate RTL implementation f iles. You have no need to interact with 
or edit these simulation f iles: the simulation is fully automated.

Report f iles are generated for the results of synthesis, C/RTL cosimulation and IP packaging.

Test bench, Language Support and C Libraries

In any C program the top-level function is called main(). In the Vivado HLS design flow, 
any sub-function below the level of main() can be specif ied as the top-level function for 
synthesis. The function main() cannot be synthesized.

• Only one function can be selected as the top-level function for synthesis. 

• Any sub-functions in the hierarchy below the function marked for synthesis will also be 
synthesized.

X-Ref Target - Figure 1-4

Figure 1-4: Vivado HLS Overview
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Typical C/C++ Construct to RTL Mapping

5

Typical C/C++ Constructs to RTL Mapping 

Operators

Control flows

Scalars

Arrays Memories

Wires or registers

Control logics

Functional units

Functions Modules

Arguments Input/output ports

à

à

à

à

à

à

HW ComponentsC Constructs 



Function Hierarchy

➜Each function is synthesized to a RTL module
➜Function inlining eliminates hierarchy

➜ The function main() cannot be synthesized
➜ Used to develop C-testbench

64

Function Hierarchy

� Each function is usually translated into an RTL module
– Functions may be inlined to dissolve their hierarchy

void A() { .. body A .. }
void C() { .. body C .. }
void B() {

C();
}

void TOP( ) {
A(…);
B(…);

}

TOP

A B
C

Source code RTL hierarchy

6



Function Arguments

➜Function arguments become module ports
➜Interface follows certain protocol to synchronize data 

exchange

65

Function Arguments

� Function arguments become ports on the RTL 
blocks

• Additional control ports are added to the design

� Input/output (I/O) protocols
– Allow RTL blocks to automatically synchronize data 

exchange

TOP

out1in1
in2

Datapath

FSMin1_vld
in2_vld

out1_vld

void TOP(int* in1, int* in2,    
int* out1) 

{
*out1 = *in1 + *in2;

}

7



Expressions

➜Expressions and operations are synthesized to 
datapath
➜Timing constraints influence the degree of registering

66

� HLS generates datapath circuits mostly from 
expressions
– Timing constraints influence the degree of registering 

8

Expressions

char A, B, C, D, 
int P;

P = (A+B)*C+D

�

+

+

A

B

C

D

P



Arrays

➜By default, an array in C code is typically 
implemented by a memory block in the RTL 
➜Read & write array -> RAM; Constant array -> ROM

➜ An array can be partitioned and map to multiple RAMs 
➜ Multiples arrays can be merged and map to one RAM 
➜ An array can be partitioned into individual elements and 

map to registers 

67

Arrays

� By default, an array in C code is typically implemented 
by a memory block in the RTL
– Read & write array -> RAM; Constant array -> ROM

� An array can be partitioned and map to multiple RAMs
� Multiples arrays can be merged and map to one RAM
� An array can be partitioned into individual elements and 

map to registers

void TOP(int)
{

int A[N];
for (i = 0; i < N; i++)

A[i+x] = A[i] + i; 
}

N-1
N-2
…
1
0

TOP

DOUTDIN
ADDR

CE
WE

RAM

A[N]

A_outA_in

9



Loops

➜By default, loops are rolled
➜Each loop iteration corresponds to a “sequence” of 

states (possibly a DAG)
➜This state sequence will be repeated multiple times 

based on the loop trip count 

68

Loops 

� By default, loops are rolled
– Each loop iteration corresponds to a “sequence” of 

states (possibly a DAG)
– This state sequence will be repeated multiple times 

based on the loop trip count

void TOP (…) {
...
for (i = 0; i < N; i++)

b += a[i];  
}

TOP

S1

a[i]
b

10
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Loop Unrolling

➜Loop unrolling to expose 
higher parallelism and achieve 
shorter latency 
➜Pros 

➜Decrease loop overhead 
➜Increase parallelism for scheduling 
➜Facilitate constant propagation and 

array-to-scalar promotion 
➜Cons – increase operation count, 

which may negatively impact 
area, power, and timing 
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Loop Unrolling

� Loop unrolling to expose higher 
parallelism and achieve shorter 
latency
– Pros

• Decrease loop overhead
• Increase parallelism for scheduling
• Facilitate constant propagation and 

array-to-scalar promotion
– Cons

• Increase operation count, which may 
negatively impact area, power, and 
timing 

for (int i = 0; i < N; i++)
A[i] = C[i] + D[i];

A[0] = C[0] + D[0];
A[1] = C[1] + D[1];
A[2] = C[2] + D[2];

.....
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Loop Pipelining
➜ Loop pipelining is one of the most important 

optimizations for high-level synthesis 
➜ Allows a new iteration to begin processing before the previous 

iteration is complete 
➜ Key metric: Initiation Interval (II) in # cycles 
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Loop Pipelining

� Loop pipelining is one of the most important optimizations 
for high-level synthesis
– Allows a new iteration to begin processing before the previous 

iteration is complete
– Key metric: Initiation Interval (II) in # cycles
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for (i = 0; i < N; ++i)
p[i] = x[i] * y[i];

II = 1ld
ld

ld

� �

�

�

�

�

st
st

st
ld – Load
st – Store

ldld

×

st

x[i] y[i]

p[i]

i=0
i=1
i=2

cycles

ld � � sti=3


