
High-Level Synthesis
Creating Custom Circuits from High-Level Code

Hao Zheng
Comp Sci & Eng

University of South Florida

1

Existing Design Flow
➜ Register-transfer (RT) synthesis

➜ Specify RT structure (muxes, registers, etc)
➜ Allows precise specification
➜ But, time consuming, difficult, error prone

Synthesizable HDL

Netlist

Bitfile

ProcessorFPGA

RT Synthesis

Physical Design

Technology Mapping

Placement

Routing

ASIC

2

Existing Design Flow

Introduction to FPGA Design with Vivado HLS www.xilinx.com 7
UG998 (v1.0) July 2, 2013

Programming Model

Historically, the programming model of an FPGA was centered on register-transfer level
(RTL) descriptions instead of C/C++. Although this model of design capture is completely
compatible with ASIC design, it is analogous to assembly language programming in
software engineering. Figure 1-1 shows a traditional FPGA design flow with RTL as the
design capture method, which illustrates how the programming model difference affects
implementation time and achievable performance for different computation platforms.

As shown in Figure 1-1, arriving at an initial working version of a software program occurs
relatively quickly in the project design cycle for both standard and specialized processors.
After the initial working version, additional development effort must be allotted to achieve
maximum performance on any implementation platform.

This f igure also shows the time it takes to develop the same software application for an
FPGA platform. Both the initial and optimized versions of an application provide signif icant
performance when compared against the same stages for both standard and specialized
processors. RTL coding and an FPGA optimized application result in the highest
performance implementation.

However, the development time required to arrive at this implementation is beyond the
scope of a typical software development effort. Therefore, FPGAs were traditionally used
only for those applications requiring a performance profile that could not be achieved by
any other means, such as designs with multiple processors.

X-Ref Target - Figure 1-1

Figure 1-1: Design Time vs. Application Performance with RTL Design Entry

3HUIRUPDQFH

7LPH

[��

*38

'63

'63

*38

[��
)3*$�ZLWK�

57/

7\SLFDO�'HVLJQ�7LPH�/LPLW�
LQ�D�6RIWZDUH�3URMHFW

)3*$�ZLWK�
57/

2SWLPL]HG�YHUVLRQ)LUVW�ZRUNLQJ�YHUVLRQ
;�����

3
Xilinx: Introduction to FPGA Design with Vivado HLS, 2013

Forthcoming Design Flow

HDL

Netlist

Bitfile

ProcessorFPGA

RT Synthesis

Physical Design

Technology Mapping

Placement

Routing

High-level Synthesis

C/C++, Java, etc.

Synthesizable HDL

ASIC

4

Forthcoming Design Flow

5

Introduction to FPGA Design with Vivado HLS www.xilinx.com 8
UG998 (v1.0) July 2, 2013

Guide Organization

Recent technological advances by Xilinx® remove the difference in programming models
between a processor and an FPGA. Just as there are compilers from C and other high-level
languages to different processor architectures, the Xilinx Vivado® High-Level Synthesis
(HLS) compiler provides the same functionality for C/C++ programs targeted to Xilinx
FPGAs. Figure 1-2 compares the result of the HLS compiler against other processor
solutions available to a software engineer.

Guide Organization
There is a signif icant difference between the performance of an FPGA and other processors
for the same C/C++ application. The following chapters in this guide describe the reasons
behind this dramatic performance difference and introduce how the Vivado HLS compiler
works.

Chapter 2: What is an FPGA?
Chapter 2, What is an FPGA? introduces the computational elements available in an FPGA
and how they compare to a processor. It covers topics such as FPGA memory hierarchy,
logic elements, and how these elements interrelate.

Chapter 3: Basic Concepts of Hardware Design
The difference between the hardware of a processor and an FPGA affects how a compiler for
each target works. Chapter 3, Basic Concepts of Hardware Design covers fundamental

X-Ref Target - Figure 1-2

Figure 1-2: Design Time vs. Application Performance with Vivado HLS Compiler

3HUIRUPDQFH

7LPH2SWLPL]HG�YHUVLRQ)LUVW�ZRUNLQJ�YHUVLRQ

7\SLFDO�'HVLJQ�7LPH�/LPLW�
LQ�D�6RIWZDUH�3URMHFW[��

*38

'63

)3*$�ZLWK�+/6

'63

*38

[��

)3*$
ZLWK�+/6

;�����

Xilinx: Introduction to FPGA Design with Vivado HLS, 2013

HLS Overview
➜ Input:

➜ High-level languages (e.g., C)
➜ Behavioral hardware description languages (e.g., VHDL)
➜ State diagrams / logic networks

➜ Tools:
➜ Parser
➜ Library of modules

➜ Constraints:
➜ Area constraints (e.g., # modules of a certain type)
➜ Delay constraints (e.g., set of operations finish in # clock cycles)

➜ Output – RTL models
➜ Operation scheduling (time) and binding (resource)
➜ Control generation and detailed interconnections

6

High-level Synthesis - Benefits
➜Ratio of C to VHDL developers (10000:1 ?)
➜Easier to specify complex functions
➜Technology/architecture independent designs
➜Manual HW design potentially slower

➜Similar to assembly code era
➜Programmers used to beat compiler
➜But, no longer the case

➜Ease of HW/SW partitioning
➜enhance overall system efficiency

➜More efficient verification and validation
➜Easier to V & V of high-level code

7

High-level Synthesis
➜More challenging than SW compilation

➜Compilation maps behavior into assembly instructions
➜Architecture is known to compiler

➜HLS creates a custom architecture to execute
specified behavior
➜Huge hardware exploration space
➜Best solution may include microprocessors
➜Ideally, should handle any high-level code

➜ But, not all code appropriate for hardware

8

High-level Synthesis: An Example

➜First, consider how to manually convert high-level
code into circuit

➜Steps
1) Build FSM for controller
2) Build datapath based on FSM

acc = 0;
for (i=0; i < 128; i++)

acc += a[i];

9

A Manual Example

➜Build a FSMD

acc = 0;
for (i=0; i < 128; i++)

acc += a[i];
acc=0, i = 0

load a[i]

acc += a[i]

i++

Done <= 1

i < 128 i >= 128

10

A Manual Example – Cont’d

➜Combine controller + datapath

acci

<

addra[i]

++ +

1 128

2x1

0

2x1

0

1

2x1

&a

In from memory

Memory addressacc
Done Memory Read

Controller

acc = 0;
for (i=0; i < 128; i++)

acc += a[i];

Start

MUX MUX MUX

11

High-Level Synthesis – Overview

High-Level Synthesis

acc = 0;
for (i=0; i < 128; i++)

acc += a[i];

acci

<

addra[i]

++ +
1 128

2x1

0
2x1

0

1

2x1

&a

In from memory

Memory addressacc
Done Memory Read

Controller

12

A Manual Example - Optimization

➜Alternatives
➜Use one adder (plus muxes)

acci

<

addra[i]

+

128

2x1

0

2x1

0

1

2x1

&a

In from memory

Memory addressacc

MUX MUX

MUX MUX MUX

13

A Manual Example – Summary

➜Comparison with high-level synthesis
➜Determining when to perform each operation

=> Scheduling
➜Allocating resource for each operation

=> Resource allocation
➜Mapping operations to allocated resources

=> Binding

14

High-Level Synthesis

High-Level Synthesis

Could be C, C++, Java,
Perl, Python, SystemC,
ImpulseC, etc.

Usually a RT VHDL/Verilog
description, but could as
low level as a bit file for
FPGA, or a gate netlist.

high-level code

Custom Circuit

15

Main Steps

Syntactic Analysis

Optimization

Scheduling/Resource Allocation

Binding/Resource Sharing

High-level Code

Intermediate
Representation

Cycle accurate RTL code

Converts code to intermediate
representation - allows all following
steps to use language independent
format.

Determines when each operation will
execute, and resources used

Maps operations onto physical resources

Front-end

Back-end

16

Parsing & Syntactic Analysis

17

Syntactic Analysis

• Definition: Analysis of code to verify syntactic
correctness
- Converts code into intermediate representation

• Steps: similar to SW compilation
1) Lexical analysis (Lexing)
2) Parsing
3) Code generation – intermediate representation

Syntactic Analysis

High-level Code

Intermediate
Representation

Lexical Analysis

Parsing

18

Intermediate Representation
➜ Parser converts an input program to intermediate

representation
➜ Why use intermediate representation?

➜Easier to analyze/optimize than source code
➜ Theoretically can be used for all languages

➜ Makes synthesis back end language independent

Syntactic Analysis

C Code

Intermediate
Representation

Syntactic Analysis

Java

Syntactic Analysis

Perl

Back End

Scheduling, resource
allocation, binding,
independent of source
language - sometimes
optimizations too

19

Intermediate Representation

➜Different Types
➜Abstract Syntax Tree
➜Control/Data Flow Graph (CDFG)
➜Sequencing Graph

➜We will focus on CDFG
➜Combines control flow graph (CFG) and data flow

graph (DFG)
➜CFG ---> controller
➜DFG ---> datapath

20

Control Flow Graphs (CFGs)
➜Represents control flow dependencies of basic

blocks
➜A basic block is a section of code that always

executes from beginning to end
➜ I.e. no jumps into or out of block, nor branching

acc = 0;
for (i=0; i < 128; i++)

acc += a[i];
i < 128?

acc=0, i = 0

acc += a[i]
i ++

Done

yes no

21

Control Flow Graphs: Your Turn

• Find a CFG for the following code.

22

i = 0;
while (i < 10) {

if (x < 5)
y = 2;

else if (z < 10)
y = 6;

i++;
}

Data Flow Graphs

➜Represents data dependencies between
operations within a single basic block

x = a+b;
y = c*d;
z = x - y;

+ *

-

a b c d

x z y

23

Control/Data Flow Graph

➜Combines CFG and DFG
➜Maintains DFG for each node of CFG

24

acc = 0;
for (i=0; i < 128; i++)

acc += a[i];

if (i < 128)

acc=0; i=0;

acc += a[i]
i ++

Done

acc

0

i

0

+

acc a[i]

acc

+

i 1

i

Transformation/Optimization

25

Synthesis Optimizations

➜After creating CDFG, HLS optimizes it with the
following goals
➜Reduce area
➜Reduce latency
➜Increase parallelism
➜Reduce power/energy

➜2 types of optimizations
➜Data flow optimizations
➜Control flow optimizations

26

➜Tree-height reduction
➜ Generally made possible from commutativity, associativity, and distributivity

Data Flow Optimizations

+

+

+

+ +

+

a b c d
a b c d

+
+

*

a b c d

+ *

+

a b c d

x = a + b + c + d

27

Data Flow Optimizations

➜Operator Strength Reduction
➜ Replacing an expensive (�strong�) operation with a faster one
➜ Common example: replacing multiply/divide with shift

b[i] = a[i] * 8; b[i] = a[i] << 3;

a = b * 5; c = b << 2;
a = b + c;

1 multiplication 0 multiplications

a = b * 13;
c = b << 2;
d = b << 3;
a = c + d + b;

28

Data Flow Optimizations

• Constant propagation
- Statically evaluate expressions with constants

29

x = 0;
y = x * 15;
z = y + 10;

x = 0;
y = 0;
z = 10;

➜Function Specialization
➜Create specialized code for common inputs

➜ Treat common inputs as constants
➜ If inputs not known statically, must include if statement for

each call to specialized function

Data Flow Optimizations

int f (int x) {
y = x * 15;
return y + 10;

}

for (I=0; I < 1000; I++)
f(0);
…

}

int f_opt () {
return 10;

}

for (I=0; I < 1000; I++)
f_opt();
…

}

Treat
frequent
input as a
constant

int f (int x) {
y = x * 15;
return y + 10;

}

30

Data Flow Optimizations

➜Common sub-expression elimination
➜If expression appears more than once, repetitions can

be replaced

a = x + y;
.
.
b = c * 25 + x + y;

a = x + y;
.
.
b = c * 25 + a;

x + y already determined

31

Data Flow Optimizations

➜Dead code elimination
➜Remove code that is never executed

➜ May seem like stupid code, but often comes from constant
propagation or function specialization

int f (int x) {
if (x > 0)

a = b * 15;
else

a = b / 4;
return a;

}

int f_opt () {
a = b * 15;
return a;

}

Specialized version for x > 0
does not need else branch -
�dead code�

32

Data Flow Optimizations

➜Code motion (hoisting/sinking)
➜Avoid same repeated computation

for (I=0; I < 100; I++) {
z = x + y;
b[i] = a[i] + z ;

}

z = x + y;
for (I=0; I < 100; I++) {

b[i] = a[i] + z ;
}

loop independent

33

Control Flow Optimizations

➜Loop Unrolling
➜Replicate body of loop

➜ May increase parallelism

for (i=0; i < 128; i++)
a[i] = b[i] + c[i];

for (i=0; i < 128; i+=2) {
a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1]

}

34

Control Flow Optimizations

➜Function inlining – replace function call with body

of function

➜Common for both SW and HW

➜SW: Eliminates function call instructions

➜HW: Eliminates unnecessary control states

for (i=0; i < 128; i++)

a[i] = f(b[i], c[i]);

. . . .

int f (int a, int b) {

return a + b * 15;

}

for (i=0; i < 128; i++)

a[i] = b[i] + c[i] * 15;

35

➜Conditional Expansion – replace if with logic
expression
➜Execute if/else bodies in parallel

Control Flow Optimizations

y = ab
if (a)

x = b+d
else

x = bd

y = ab
x = a(b+d) + a’bd

y = ab
x = y + d(a+b)

[DeMicheli]

Can be further optimized to:

36

Example

➜Optimize this

x = 0;
y = a + b;
if (x < 15)

z = a + b - c;
else

z = x + 12;
output = z * 12;

37

Scheduling/Resource Allocation

38

Scheduling

• Scheduling assigns a start time to each operation
in DFG
- Start times must not violate dependencies in DFG
- Start times must meet performance constraints

+ Alternatively, resource constraints

• Performed on the DFG of each CFG node
- Cannot execute multiple CFG nodes in parallel

39

Scheduling – Examples

+

+

+

+ +

+

a b c d
a b c d

+ +

+

a b c d

Cycle1

Cycle2

Cycle3
Cycle3

Cycle1 Cycle2

Cycle1

Cycle2

40

Scheduling Problems
➜ Several types of scheduling problems

➜ Usually some combination of performance and resource constraints
➜ Problems:

➜ Unconstrained
➜ Not very useful, every schedule is valid

➜ Minimum latency
➜ Latency constrained
➜ Mininum-latency, resource constrained

➜ i.e. find the schedule with the shortest latency, that uses less than a
specified # of resources

➜ NP-Complete
➜ Mininum-resource, latency constrained

➜ i.e. find the schedule that meets the latency constraint (which may be
anything), and uses the minimum # of resources

➜ NP-Complete

41

Minimum Latency Scheduling
➜ ASAP (as soon as possible) algorithm

➜ Find a candidate node
➜ Candidate is a node whose predecessors have been scheduled and completed (or

has no predecessors)
➜ Schedule node one cycle later than max cycle of predecessor
➜ Repeat until all nodes scheduled

+ +

*

a b c d

*

- <

e f g h

Cycle1

Cycle2

Cycle3

+Cycle4

Minimum possible latency - 4 cycles
42

Minimum Latency Scheduling
➜ ALAP (as late as possible) algorithm

➜ Run ASAP, get minimum latency L
➜ Find a candidate

➜ Candidate is node whose successors are scheduled (or has none)
➜ Schedule node one cycle before min cycle of successor

➜ Nodes with no successors scheduled to cycle L
➜ Repeat until all nodes scheduled

+ +

*

a b c d

* -

<

e f g h

Cycle1

Cycle2

Cycle3

+Cycle4

L = 4 cycles
43

Latency-Constrained Scheduling

➜ Instead of finding the minimum latency, find
latency less than L

➜Solutions:
➜Use ASAP, verify that minimum latency <= L.
➜Use ALAP starting with cycle L instead of minimum

latency (don�t need ASAP)

44

Scheduling with Resource Constraints

➜Schedule must use less than specified number of
resources

+

*

a b c d

+

-

e f g

Cycle1

Cycle3

Cycle4
+Cycle5

+
*

Cycle2

Constraints: 1 ALU (+/-), 1 Multiplier

45

Scheduling with Resource Constraints

➜Schedule must use less than specified number of
resources

+ +

*

a b c d

+

-

e f g

Cycle1

Cycle2

Cycle3
+Cycle4

*

Constraints: 2 ALU (+/-), 1 Multiplier

46

➜Definition: Given resource constraints, find
schedule that has the minimum latency
➜Example:

Minimum-Latency, Resource-Constrained
Scheduling

a b c d e f g

+ +

Constraints: 1 ALU (+/-), 1 Multiplier

+

-

*

+

47

➜Definition: Given resource constraints, find
schedule that has the minimum latency
➜Example:

Minimum-Latency, Resource-Constrained
Scheduling

a b c d e f g

+ +

Constraints: 1 ALU (+/-), 1 Multiplier

+

-

*

+

48

➜Definition: Given resource constraints, find
schedule that has the minimum latency
➜Example:

Minimum-Latency, Resource-Constrained
Scheduling

a b c d e f g

+ +

Constraints: 1 ALU (+/-), 1 Multiplier

+

-

*

+

49

Binding/Resource Sharing

50

Binding

➜During scheduling, we determine:
➜When operations will execute
➜How many resources are needed

➜We still need to decide which operations execute
on which resources – binding
➜If multiple operations use the same resource, we need

to decide how resources are shared -resource sharing.

51

Binding

➜Map operations onto resources such that
operations in same cycle do not use same
resource

* + +

**

+

-

-

1 2 3

45 6

7
8

Cycle1

Cycle2

Cycle3

Cycle4

2 ALUs (+/-), 2 Multipliers

Mult1 ALU1 ALU2 Mult2
52

Binding

➜Many possibilities
➜ Bad binding may increase resources, require huge steering

logic, reduce clock, etc.

* + +

**

+

-

-

1 2 3

45 6

7
8

Cycle1

Cycle2

Cycle3

Cycle4

2 ALUs (+/-), 2 Multipliers

Mult1 ALU1 ALU2Mult2
53

Binding

➜Cannot do this
➜ 1 resource can�t perform multiple ops simultaneously!

* + +

**

+

-

-

1 2 3

45 6

7
8

Cycle1

Cycle2

Cycle3

Cycle4

2 ALUs (+/-), 2 Multipliers

54

Translation to Datapath

* + +

**

+

-

-

1 2 3

4
5 6

7
8

Cycle1

Cycle2

Cycle3

Cycle4

Mult(1,5) Mult(6)ALU(2,7,8,4) ALU(3)

Mux Mux

Reg

Mux Mux

a b c h

Reg RegReg

a b c d e f g h i

d e i g e f

1) Add resources and
registers

2) Add mux for each input

3) Add input to left mux for
each left input in DFG

4) Do same for right mux

5) If only 1 input, remove
mux

55

Summary

56

Main Steps
➜ Front-end (lexing/parsing) converts code into

intermediate representation – CDFG
➜ Scheduling assigns a start time for each operation in DFG

➜ CFG node start times defined by control dependencies
➜ Resource allocation determined by schedule

➜ Binding maps scheduled operations onto physical
resources
➜ Determines how resources are shared

➜ Big picture:
➜ Scheduled/Bound DFG can be translated into a datapath
➜ CFG can be translated to a controller
➜ High-level synthesis can create a custom circuit for any CDFG!

57

Limitations
➜ Task-level parallelism

➜Parallelism in CDFG limited to individual control states
➜Cannot have multiple states executing concurrently

➜Potential solution: use model other than CDFG
➜Kahn Process Networks

➜ Nodes represents parallel processes/tasks
➜ Edges represent communication between processes

➜High-level synthesis can create a controller+datapath for each
process
➜ Must also consider communication buffers

➜Challenge:
➜Most high-level code does not have explicit parallelism

➜ Difficult/impossible to extract task-level parallelism from code

58

Limitations
➜ Coding practices limit circuit performance

➜Very often, languages contain constructs not appropriate
for circuit implementation
➜Recursion, pointers, virtual functions, etc.

➜ Potential solution: use specialized languages
➜Remove problematic constructs, add task-level parallelism

➜ Challenge:
➜Difficult to learn new languages
➜Many designers resist changes to tool flow

59

Limitations
➜ Expert designers can achieve better circuits

➜High-level synthesis has to work with specification in code
➜Can be difficult to automatically create efficient pipeline
➜May require dozens of optimizations applied in a particular order

➜Expert designer can transform algorithm
➜Synthesis can transform code, but can�t change algorithm

➜ Potential Solution: ???
➜New language?
➜New methodology?
➜New tools?

60

61

Vivado HLS Highlights

62

Overview

High-Level Synthesis www.xilinx.com 14
UG902 (v2014.1) May 30, 2014

Chapter 1: High-Level Synthesis

to and from the cycle accurate RTL implementation f iles. You have no need to interact with
or edit these simulation f iles: the simulation is fully automated.

Report f iles are generated for the results of synthesis, C/RTL cosimulation and IP packaging.

Test bench, Language Support and C Libraries

In any C program the top-level function is called main(). In the Vivado HLS design flow,
any sub-function below the level of main() can be specif ied as the top-level function for
synthesis. The function main() cannot be synthesized.

• Only one function can be selected as the top-level function for synthesis.

• Any sub-functions in the hierarchy below the function marked for synthesis will also be
synthesized.

X-Ref Target - Figure 1-4

Figure 1-4: Vivado HLS Overview

63

Typical C/C++ Construct to RTL Mapping

5

Typical C/C++ Constructs to RTL Mapping

Operators

Control flows

Scalars

Arrays Memories

Wires or registers

Control logics

Functional units

Functions Modules

Arguments Input/output ports

à

à

à

à

à

à

HW ComponentsC Constructs

Function Hierarchy

➜Each function is synthesized to a RTL module
➜Function inlining eliminates hierarchy

➜ The function main() cannot be synthesized
➜ Used to develop C-testbench

64

Function Hierarchy

� Each function is usually translated into an RTL module
– Functions may be inlined to dissolve their hierarchy

void A() { .. body A .. }
void C() { .. body C .. }
void B() {

C();
}

void TOP() {
A(…);
B(…);

}

TOP

A B
C

Source code RTL hierarchy

6

Function Arguments

➜Function arguments become module ports
➜Interface follows certain protocol to synchronize data

exchange

65

Function Arguments

� Function arguments become ports on the RTL
blocks

• Additional control ports are added to the design

� Input/output (I/O) protocols
– Allow RTL blocks to automatically synchronize data

exchange

TOP

out1in1
in2

Datapath

FSMin1_vld
in2_vld

out1_vld

void TOP(int* in1, int* in2,
int* out1)

{
*out1 = *in1 + *in2;

}

7

Expressions

➜Expressions and operations are synthesized to
datapath
➜Timing constraints influence the degree of registering

66

� HLS generates datapath circuits mostly from
expressions
– Timing constraints influence the degree of registering

8

Expressions

char A, B, C, D,
int P;

P = (A+B)*C+D

�

+

+

A

B

C

D

P

Arrays

➜By default, an array in C code is typically
implemented by a memory block in the RTL
➜Read & write array -> RAM; Constant array -> ROM

➜ An array can be partitioned and map to multiple RAMs
➜ Multiples arrays can be merged and map to one RAM
➜ An array can be partitioned into individual elements and

map to registers

67

Arrays

� By default, an array in C code is typically implemented
by a memory block in the RTL
– Read & write array -> RAM; Constant array -> ROM

� An array can be partitioned and map to multiple RAMs
� Multiples arrays can be merged and map to one RAM
� An array can be partitioned into individual elements and

map to registers

void TOP(int)
{

int A[N];
for (i = 0; i < N; i++)

A[i+x] = A[i] + i;
}

N-1
N-2
…
1
0

TOP

DOUTDIN
ADDR

CE
WE

RAM

A[N]

A_outA_in

9

Loops

➜By default, loops are rolled
➜Each loop iteration corresponds to a “sequence” of

states (possibly a DAG)
➜This state sequence will be repeated multiple times

based on the loop trip count

68

Loops

� By default, loops are rolled
– Each loop iteration corresponds to a “sequence” of

states (possibly a DAG)
– This state sequence will be repeated multiple times

based on the loop trip count

void TOP (…) {
...
for (i = 0; i < N; i++)

b += a[i];
}

TOP

S1

a[i]
b

10

+LD
S2

Loop Unrolling

➜Loop unrolling to expose
higher parallelism and achieve
shorter latency
➜Pros

➜Decrease loop overhead
➜Increase parallelism for scheduling
➜Facilitate constant propagation and

array-to-scalar promotion
➜Cons – increase operation count,

which may negatively impact
area, power, and timing

69

Loop Unrolling

� Loop unrolling to expose higher
parallelism and achieve shorter
latency
– Pros

• Decrease loop overhead
• Increase parallelism for scheduling
• Facilitate constant propagation and

array-to-scalar promotion
– Cons

• Increase operation count, which may
negatively impact area, power, and
timing

for (int i = 0; i < N; i++)
A[i] = C[i] + D[i];

A[0] = C[0] + D[0];
A[1] = C[1] + D[1];
A[2] = C[2] + D[2];

.....

11

Loop Pipelining
➜ Loop pipelining is one of the most important

optimizations for high-level synthesis
➜ Allows a new iteration to begin processing before the previous

iteration is complete
➜ Key metric: Initiation Interval (II) in # cycles

70

Loop Pipelining

� Loop pipelining is one of the most important optimizations
for high-level synthesis
– Allows a new iteration to begin processing before the previous

iteration is complete
– Key metric: Initiation Interval (II) in # cycles

12

for (i = 0; i < N; ++i)
p[i] = x[i] * y[i];

II = 1ld
ld

ld

� �

�

�

�

�

st
st

st
ld – Load
st – Store

ldld

×

st

x[i] y[i]

p[i]

i=0
i=1
i=2

cycles

ld � � sti=3

