CDA 4253 FPGA System Design
FPGA Architectures

Hao Zheng
Dept of Comp Sci & Eng
U of South Florida

How to HW Reconfigurable

e Not SW

* Change structure
— Change connections among components
— Change logic functions of components

History — Simple Programmable Logic

PLA
PAL
input
+ 5V
— % —, OR plane
> () —|>o MNU—
B *{>c r\J__l + 5V
D %
D ~
D PN | —
»]

AND plane Eﬂ?{ﬂ? Simplified programmable logic device

output

History — Complex Programmable Logic

* Built on top of SPL
* Suitable for small scale applications
* Coarse-grained programmability

}33UU0d.13}u|

FPGAs — Generic Architecture

Also include common
fixed logic blocks for
higher performance:

On-chip mem.
DSP/Multiplier

Fast arithmetic logic
Microprocessors
Communication logic

1/0|

1/0|

1/0|

1o |

1o

10 |

| 1o |

CLB

| CLB

CLB ,

CLB

CLB |

CLB

CLB

CLB

1/0

1/0

| CLB

CLB

CLB

CLB

1/0

CLB |

CLB

CLB

CLB

1o |

10

1o |

| vo |

I/0

Programming Technologies

a

Potential links

e

NOT

NOT

!

*®

Logic 1

«— Pull-up resistors

8D—<:\y=1 (N/A)

AND

Programming Technologies: Fuses

Fuses Logic 1
Fat /
a «— Pull-up resistors
Faf
NOT . & =0 (N/A
Fbt & y - 0 ()
b AND
be

NOT

Programming Technologies: Fuses

Logic 1
Fat
a «— Pull-up resistors
\ |/
7/ | N l
NOT | 8D_G y=a&!b
" \ [/,)
be

NOT

Programming Technologies: Anti-fuses

Unprogrammed Logic 1

antifuses

a DE i s «— Pull-up resistors
l

NOT [&)-Q y =1 (N/A)

DK M AND

Programming Technologies: Anti-fuses

Programmed
antifuses

a l
W\ |/,
D: /1 |\

Logic 1

«— Pull-up resistors

NOT

\\ |/,

89—Gy=!a&b

b - ——a
/1N

NOT

AND

10

Programming Technologies: FLASH

Normal E°PROM
MOS transistor transistor
'ﬁ\' ‘ f
* ;
— —_———— <+

EZPROM Cell

floating gate

11

Programming Technologies: SRAM

-

Transistor

Open

i

-

o

Closed

4

Static RAM Cell

i
1 g
- 1 |
1 -
Data il Dat

53

E2PROM /

Feature SEAM Antifuse
‘ FLASH
One or more One or more
Technology node State-oMhe-art generations behind generations behind
Yes Yes(in-system
Regogmanmuable (in =yatem) Mo or offine)
etasing) than SR AM
Volatile (nuist No
be proganmnel Yes e
onp up) (but can be if required)
Requires exter mal ’ |
configanation file i e
Good for Yes Yes
pratatyng (wEry Qoo (reasonabile)
hirstam-on Mo Yes Yes
5 Acceptabls
IP Secunity g sy when u very Good very Good
Size of Large Medium-zmall
comdfiypuation cell (six tranzidors) Very small (two transistors)
Power : M edim Lo Medum
consunypaon
RadHard Mo Yes Mot reslly

14

Basic Logic Elements T 2 il i) -
(BLEs)
.L—-l_n -}— 4 Input Look-Up
._(Table (LUT-4)
— -
Basic component E_I_]—
that can be — " {
Multiplexer i
programmed to B =5 J
logic functions and L (_I_ /ﬁdk
provide storage. {: / J_ D
ip-Flop
SRAM/ [} :[_'
B
B

15

Lookup Tables (LUTSs)

X .
Y Commercial FPGAs

e Xilinx: 6-LUT
SRAM 00 o Altera: 6-LUT

e Microsemi: 4-LUT
SRAM 01
SRAM |—{10 For x-input LUT, it can be

programmed into one of
SRAM 11 -

22

functions.

LUT = Programmable Truth Table

Ol || >

Xy X Y z
gk 00| A
01| B

01
7 1 0O C
0 11| D

11

Also called function generator.

17

AND

X
0
0
1
1

OR

X
0
0
1
1

NAND

- 1 «« O

X

NOR

X
0
0

XOR XNOR

X Y XYy
01 01
— 7 —Z
10 10

11 11

[
<]

X Y
sk

01

10

11

Features of LUTs

 ALUT is a piece of RAM.
— Can be configured as distributed RAM in Xilinx.
— Can be configured as shift registers.

* A n-LUT can implement any n-input logic
functions.

— Logic minimization should reduce the number of
inputs, not logical operators.

* All logic functions implemented by a n-LUT have
the same propagation delay.

Look-up-tables (LUTs)

« Why aren’t FPGAs just a big LUT?

— Size of truth table grows exponentially based on # of inputs
« 3 inputs = 8 rows, 4 inputs = 16 rows, 5 inputs = 32 rows, etc.
— Same number of rows in truth table and LUT
— LUTs grow exponentially based on # of inputs
« Number of SRAM bitsina LUT =2 * o
— 1 =# of inputs, o = # of outputs
— Example: 64 input combinational logic with 1 output would require 264

SRAM bits
* 1.84 x 10" SRAM bits required.

 Large LUT - long latency

« Clearly, not feasible to use large LUTs
— S0, how do FPGAs implement logic with many inputs?

Look-up-tables (LUTs)

* Map circuits onto multiple LUTs

— Divide circuit into smaller circuits that fit in LUTs (same # of inputs and
outputs)

— Example: 2-input LUTs

26

Sequential Logic

— 2 WT

A\ 4

FF

” MUX —

Configurable Logic Blocks

Number of BLEs are grouped
with a local network in order
to implement functions with
a large number of inputs and
multiple outputs.

More efficient to implement
logic functions with common I/0O.

Save routing resources.

L]

BLE

BLE

BLE

BLE

28

Configurable Logic Blocks (CLBs)

Example: Ripple-carry

adder A(1) B(1) A(0) B(0) Cin(0)
— Each LUT implements 1 L cin(r)
full adder ixl
— Use efficient _ .
connections between 3"”'L S}"”t 3"”L S}OUt
LUTSs for carry signals
l 1
‘ : ‘ ! r r
2X1 2X1 Cout(0) 2x1 2x1

‘ |) 1

Cout(1) S(1) S(0)

Programmable Interconnect

30

FPGA Routing Architectures

Channel
Width

Must be flexible to
accommodate various

circuit implementations.

o= I T

v

Bﬁ J Vertical Routing
-
/0 Block g 0 Channel
0 —0
Switch Box
Configurable (SB)
Logic Block
(CLB)
Connection
O Box
Horzontal O

Routing Channel

31

Connection Boxes

Connection Box

SRAM

Programmable switches

Connection Boxes

* Flexibility —the number of wires a CLB

input/output can connect to

CLB

Flexibility = 2

CLB

*Dots represent possible connections

Flexibility = 3

CLB

Switch Boxes

$—— SRAM cell

34

Segmented Routing

Length 2 Length 4
wire wire

ot B O OB | e B
e N e

—

= =—/

S —

* Short wires: many, local connections.
* Long wires: few, low latency, carrying global signals
* Dedicated long wires for clock/reset signals

* Optimal routing should use minimal number of
programmable connections

35

Hierarchical Routing Architecture

I |
| |
| I
| |
| =1 I
| I
| I
| I
| I
| I

Most designs display locality of connections — hierarchical routing architecture.

36

Configuration

FPGA Configuration

N2

VR’

3-in, 1-out

LUT

How to get a bitstream into FPGA?

FPGA Configuration

Configuration data in

Configuration data out

O = /O pin/pad
E] — SRAM cell

b
b

S

e

UM

-
L]
[
[
O
[
O
Cl
]
]
Ol

OdoobobooOoOooObO0OfOn

TBloe

Ooodo0ooOoooOooao

O00000000000

39

FPGA Configuration

OdoboboboobOobbdnOn

...... 0101000100100010010101]
ronen:

- HHHH A -

oo |2ll0000010004) &

E] ~ SRAM cell O ﬂ:g] O

0 [m}g}}m} 0

O O
DDoDODoDDoDooDDOoO

FPGA Configuration — After

O = I/O pin/pad
E] — SRAM cell

Odobobooobboobobdnn

,

1
olof{s-{ol-{or{or{-fah

L]
L]
CJ
L]
| oo -
[]
]
]
]

Esl
o

l'ﬁ?_‘l
Li_i

$

L'QLJ

0Hop-{olo-fa-{o-z+

E:

0000000000000

O0000000O000 O

41

Configuration Comes at a Cost

1T

4-6T J
SRAM —|
_‘

+ Configuration circuitry
+ Error detection/correction

+ Security features

https://en.wikipedia.org/wiki/Static random-

WL
Vop
Ms :"D]_/IQ - |: Mg
TT TLC
0 Q
A= =
BL M, M; BL
=
Vdd

Word Line

6T SRAM

4T SRAM

42

https://en.wikipedia.org/wiki/Static_random-access_memory

FPGA

Design Flow

o

Source Code

!

v

Logic Synthesis

.

Technology Mapping

00101011001010
01001011101010
11011100100110
00010001111001
01001110001010
00110110010101
11001010000000
11001010001010
00110100100110
11000101010101

P = = =T |

.

Placement

A 4

Routing

.

Bitstream Generation

uuuuuuuuuuuu

H O HKEODOO0 OO O]

43

FPGA CAD Flow

* Input:
— A circuit (netlist)
* QOutput:
— FPGA configuration bitstream

* Main (Algorithmic) Stages:
— Logic synthesis/optimization
— Technology mapping
— Packing/placement
— Routing
— Bitstream generation

Computing Technologies

HW, SW, and FPGA

* Traditional approaches to computation: HW & SW
e HW (ASICs)

— Fixed on a particular application
— Efficient: performance, silicon area, power
— Higher cost/per application
* SW (microprocessors)
— Used in many applications
— Less efficient: performance, silicon area, power
— Lower cost/per application

46

HW, SW, and FPGA

* Field Programmable Gate Arrays (FPGAS)
— Spatial computing: similar to HW
— Reprogrammable: similar to SW
— Faster than SW and more flexible than HW
— Harder to program than SW

— Less efficient than HW: performance, power
consumption & silicon area

47

Temporal vs Spatial Computing (SW vs. HW)

tl =x

t2=tl * A
t2=12+B
t2 =12 * tl
y =t2+C

y=Ax*+Bx+C

Temporal Computation

'

tl

t2

Spatial Computation

® o
BT

X Ay

48

Why SW is Slower?

* Generality:

— Instruction set may not provide the operations your program
needs

— Processors provide hardware that may not be useful in every
program or in every cycle of a given program: Multipliers,
Dividers

* |nstruction Memory

— Program instructions and intermediate results stored in
memory.

— Accessing memory is very slow.

e Bit Width Mismatches

— General purpose processors have a fixed bit width, and all
computations are performed on that many bits

SW or FPGA?

 CPUs —cheaper, faster, sequential, fix data format
— Sequential, control-oriented applications

 FPGA — costlier, slower, parallel, custom data op.
— Applications with data parallelism

e FPGA wins if

(programming + exec time)qpca <= (compilation + exec time)qp

How about ASIC HW?

* Dedicated -> not programmable.

* Takes long time and high cost to design and
develop (typical processor takes a handful of years
to design, with design teams of a few hundred
engineers)

— High non-recurring cost (NRE) -> very expensive!
 Justification for high cost: high volume
applications, or high-performance is more desired

ASIC vs FPGA

+ High Performance

+ High Volumn Production
+ Low Area

+ Low Power Consumption
— Low Reusability

— Low Flexibility

- High NRE

— High Time-to-market

Processor with
FPGA

Time-Multiplexed

High Flexibility +

High Reusability +

Low Time-to-market +
Low NRE +

High Area -

Low Performance —

High Power Consumption -
Low Volume Production —

52

ASIC vs FPGA

e Time-to-Market

— FPGA 6-12 month shorter

Cost

— FPGA much less expensive in low-volume applications
Development time

— FPGA shorter as no need to fabricate

Power consumption

— ASIC is better — no need to run SRAMs

Debug and Verification

— FPGA easier — direct test in-device

Instance—Specific Design

* ASIC targets a particular application
e ASIC more efficient than FPGA in application

* FPGA can be more efficient if it is customized to

particular instances of an application

— Encryption design for specific password

— reduce area/power, higher performance
* Customizations

— Data width

— Constant folding

— Function adaptation

Applications

* Low-cost customizable digital circuitry
— Can be used to make any type of digital circuit.

— Rapid with product development with design software.
Upgradable.

* High-performance computing
— Complex algorithms are off-loaded to an FPGA co-processor.
— Application-specific hardware

— FPGAs are inherently parallel and can have very efficient
hardware algorithms: typical speed increase is x10 - x100.

* Evolvable hardware
— Hardware can change its own circuitry.
— Neural Networks.

* Digital Signal Processing

Reading

* Paper at
http://www.cse.usf.edu/~haozheng/teaching/cda4253/

FPGA Architectures: An Overview
Section 2.1, 2.2, 2.3, 2.4 (skip 2.4.1.1, 2.4.2.2, 2.4.2.3),
Skim 2.6

56

http://www.cse.usf.edu/~zheng/teaching/cda4253/

Xilinx 7-Series Devices

57

Xilinx FPGA Architecture

DCM OB
) /
/ -

/ —
/ —
/ —]
/ —
/ —
/ —
~— |0Bs ——= -
| ! ! | B _ — —
E i eoeo g
i i \ —]
[72] n : n : n [72] 1
Siijaiaial gl —
Ol |l o . O i O S \\ —
] \) =

o \ / . / :\ .

| : : | \\ L4) °

<~—— I0Bs — / / \
CLB Block RAM Multiplier

DS099-1_01_032703

Xilinx 7-Series FPGA Architegture

On-Chip block RAM =" ! ~—— On-Chip block RAM

Hi-performance Serial 1/0
Connectivity
Transceiver Technology

Hi-performance Serial I/0
Connectivity
Transceiver Technology

A b b b B L b Al L
FE AT T W W™
EA W T T =TT ww-
7Y Eh R Wn Wn Wm W " W -
Ll Ba B R R R R B R B |
sl L L L L R\ B/B

-——-—

Logic Fabric ——= Logic Fabric

:

59

Xilinx 7-Series Family

ARTIX”

KINTEX?

VIRTEX™

_ N Lowest Power Industry’s Best Industry’s Highest
Maximum Capability and Cost Price/Performance | System Performance

Logic Cells

Block RAM

DSP Slices

Peak DSP Perf.

Transceivers

Transceiver
Performance

40-700

3.75Gbps

Memory Performance

I/O Pins

/0 Voltages

3.3V and below

70K - 480K

240 - 1,920

6.6Gbps and 12.5Gbps

3.3V and below
1.8V and below

285K - 2,000K
700 - 3,960

504 GMACS 2,450 GMACs 5,053 GMACS

12.5Gbps,
13.1Gbps and 28Gbps

1066Mbps 1866Mbps 1866Mbps

3.3V and below
1.8V and below

60

Xilinx Artix-7

* Low end 7-series FPGA manufactured using 28nm
* Based on 6-input LUT
— Configurable as distributed memory
* Support DDR3 memory interfaces
* High-speed serial interfaces supporting multi-
gigabit communications
* On-chip DSPs, multipliers, and block RAMs

* Clock management tiles to provide high precise
and low jitter clock signals

Xilinx Artix-7 - CLBs couT couT

iCLB } 'i
+ 8 6-LUTs (5 et
L IOFES - B
e 2 carry chains i i
* 256b distributed RAM (—T—))| Siice(0 |
* 128b shift register :L___J‘r _________ B

The abundant FFs can be used to improve design
performance with pipelining.

Xilinx Artix-7 — CLBs
Slice Architecture

4 6-LUTs

8 FFs

Carry logic for fast addition
Other local wires w/o global
routing

(2]
=

YYYYVYVY Y

LUT

YYVYVYYY Y

YYVYVVVY VY

YYVYVVVY VY

I V][V| I V]| |V

T T T

63

Xilinx Artix-7
CLBs Slice Architecture

Wide-function MUXs to
implement functions
with 8 inputs.

Slice

LUT

LUT —

LUT

F7 MUX

LUT

F7 MUX

F8 MUX

64

Xilinx Artix-7 — CLBs

o o
| ce — / [>
— CLK
— S/IR
[>— [>
6-Input Register
LUT
06 —
05— . D e >
—e — CE
> — CLK
— S/IR
Register

* Each 6-LUT implements any 6-input functions, or
* Two 5-input functions with shared inputs.

65

Distributed RAMs

* Slices in CLBs of type SLICEM can be configured as
synchronous RAMs
— 256x1b single port
— 128x1b dual/single port

e Can also be configured as ROM with up to 256b.

* Can be instantiated by using special VHDL
components.

Backup

4-

> 3> 1> >

WSO

input LUT

1]

3-input LUT

==

2-input LUT

L

68

Xilinx Artix-7

Configurable Logic Blocks

Block RAM Blocks(3)

_ (CLBs)
Device | s Max | Slices® .

Slices(1) DFi‘sAtK,ilb(lij(tg)d 18 Kb | 36 Kb (Kab’§
XC7A15T 16,640 2,600 200 45 50 25 900
XC7A35T 33,280 5,200 400 90 100 50 1,800
XC7A50T 52,160 8,150 600 120 150 75 2,700
XC7A75T 75,520 11,800 892 180 210 105 | 3,780
XC7A100T | 101,440 15,850 1,188 240 270 135 | 4,860
XC7A200T | 215,360 33,650 2,888 740 730 365 | 13,140

Xilinx Artix-7

Device | CMTs(4) | PCle® | GTPs :IAOEI?S E‘;t,? |I(;/(9) Ma};(ol(J;)‘,er
XC7A15T 5 1 4 1 5 250
XC7A35T 5 1 4 1 5 250
XC7A50T 5 1 4 1 5 250
XC7A75T 6 1 8 1 6 300
XC7A100T 6 1 8 1 6 300
XC7A200T 10 1 16 1 10 500

70

