ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

ToolsXilinxLabsRTLHLSIP

Creating and using custom IP blocks both in
Verilog and using High-Level Synthesis

Back to Xilinx Labs

Objectives

e Learn to create custom IP blocks at RTL level (Verilog, VHDL)

e Use AXI bus to connect an IP block with the Zynqg PS

e Learn to use High-level Synthesis (HLS) to create a similar IP block in
C/C++

e Test both IP blocks using the SDK

Custom IP block at RTL level

A system on a chip consisting of both a Hard Processor System and FPGA
fabric, such as the Zyng-7000, offers the opportunity of offloading
computation to the FPGA. Parallelizable algorithms can thus be accelerated,
or more computations can be executed in parallel.

In this section, we will create a simple custom AXI IP block that multiplies
two numbers and will connect it to the Zyng PS. The multiplier will take as
input two 16-bit unsigned numbers and will output the product as one 32-
bit unsigned number. A single 32-bit write to the IP block will contain the
two 16-bit inputs, separated into the lower and higher 16 bits. A single 32-
bit read from the peripheral will contain the result from the multiplication of
the two 16-bit inputs.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 1 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/Xilinx

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

This design doesn’t really make much sense as an accelerator, but it is a
good learning example.

Create and Package the IP block

Feel free to start with any previously made Vivado project that contains a
Zynq system. For example, you can start with the system you created in the
previous lab, Building a basic ZYNQ system on the PYNQ-Z1 board. To
make your work easier, you can copy-paste the project ZynqComputer to
ZynqComputerExtended and open it in Vivado. Now that you have a project
with a Zynqg PS System open in Vivado, follow the instructions below.

e Start by going to menu Tools -> Create and Package New IP....

o Read the overview of the Create and Package New IP wizard and
then click Next.

e We are interested in a new AXI4 peripheral, therefore select the Create
a new AXI4 peripheral and click Next.

o Note: If you've been attentive in the previous tutorial and
homework assignment, you might still remember what the AXI
stands for. It is also reasonable that you forgot, considering spring
break, etc. Either way, you are encouraged to consult this
reference guide and other sources to learn more about AXI, AMBA,
and how it compares to the Avalon Interface.

¢ Fill in the Peripheral Details fields with proper values. For the IP
location, select a directory in your group folder, in which you will store
all your custom IP blocks.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 2 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsHelloZynq
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.altera.com/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

% Createand Package New IP X

Peripheral Details

Specify name, version and description for the new peripheral '
Name: rti_multiplier
Version: 1.0

Display name: rtl_multiplier_v1.0

Description: 16-bit multiplier AXI IP block in Verilog

IP location: D:WSIip_repo| | E

Overwrite existing

®

e Onthe Add Interfaces page, use the default 32-bit AXlI4 Lite Slave
interface.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 3 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPDescr.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

% Create and Package New IP X

Add Interfaces

Add AXI4 interfaces supported by your peripheral ‘
Enable Interrupt Support + - Name S00 AXI

Interfaces Interface Type Lite v

{ soo_axi
Interface Mode Slave v
Data Width (Bits) 32 v

< <) .

Memory Size (Bytes) | 64 v

o= S00_AXI | ! Number of Registers 4 [4.512]

nl_multiplier_v1.0

©

e On the last page, select Edit IP and click Finish. This will open another
Vivado window in which we will implement the peripheral.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 4 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPInterfaces.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

4/11/19, 11:18 AM

% Create and Package New IP X

VlVADO’ Create Peripheral

HLx Editions .)
Peripheral Generation Summary

1. IP (xilinx.com:user:tl_multiplier:1.0) with 1 interface(s)

2. Driver(v1_00_a) and testapp more info

3. AXI4 VIP Simulation demonstration design more info

4. AXI4 Debug Hardware Simulation demonstration design more info

Peripheral created will be available in the catalog :
D:/WSlip_repo

Next Steps:

Add IP to the repository

(® EditIP

Verify Peripheral IP using AX14 VIP

Verify peripheral IP using JTAG interface

v
t XI LI NX Click Finish to continue
V'S

ALL PROGRAMMABLE.

®

Edit the IP block

The multiplier Verilog code is simple since it only multiplies two numbers.

For example, this code will do:

module rtl multiplier(
input clk,
input [15:0] a,
input [15:0] b,
output [31:0] product
)i

reg [31:0] productReg;

assign product = productReg;

always @ (posedge clk) begin
productReg <= a * b;

end

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Page 5 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPEditFin.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

endmodule

Media:rtl_multiplier.v

4/11/19, 11:18 AM

e Save this file as rtl_multiplier.v in a directory such as ip_repo|src| for
later access.

e From the pannel Flow Navigator on the left, click Add Sources and, in
the new Add Sources window, select Add or create design sources.

% Add Sources X

VIVADO'!

HLx Editions

£ XILINX

(?)
_/

PROGRAMMABLE.

Add Sources

This guides you through the process of adding and creating sources for your project

Add or create constraints
® Add or create design sources

Add or create simulation sources

Cancel

¢ Next, select the previously saved ip_repo|src|rtl_multiplier.v file and
have the option Copy sources into IP Directory checked. Click Finish
and the file will be added to the Design Sources.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Page 6 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/images/6/68/Rtl_multiplier.v
http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPAddSrc.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

% Add Sources X

Add or Create Design Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those file types to add to your project. Create a new source
file on disk and add it to your project.

+

A
Index Name Library Location
@ 1 rtl_multiplierv xil_defaultib D:/AWS/ip_repol/src

Add Files | | Create File

Scan and add RTL include files into project
V| Copy sources into IP Directory

v Add sources from subdirectories

@ Next = | Einish ‘ | Cancel ‘

At this point the rtl_multiplier.v file is separately part of the Design Sources.
Let's connect it to the AXI IP block.

e Expand the top branch (rtl_multiplier_v1_0.v) and open the file
rtl_multiplier_v1_0_S00_AXI_inst by double-clicking on it.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 7 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPAddSrc2.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

Sources 2 _ 00O X
Q = | s |+ e
v Design Sources (=
v @84 rtl_multiplier_v1_0 (ril_multiplier_v1_0.v) (1
ve rtl_multiplier_v1_0_S00_AXI_inst: rtl_multiplier_v1_0_¢
¥@ rt_multiplier (rtl_multiplier.
v IP-XACT (1
™ componentxml

v Constraints
constrs_1
v Simulation Sources (2
v sim_1(2
v wb& rtl_multiplier_v1_0 (rfl_multiplier_v1_0v) (1
ve rt_multiplier_v1_0_S00_AXI_inst: rtl_multiplier_v1_
¥® rtl_multiplier (rtl_multiplier

< >

Hierarchy Libraries Compile Order

e Scroll down to the end of the file where the comment Add user logic
here is and insert the code below. The code below instantiates the
rtl_multiplier module inside the AXI IP block and connects the clock to
the AXI clock, the inputs a and b to the 16 MSB and LSB of the first
register (s/v_reg0) and the output product to a created wire
rtl_multiplier_out.

// Add user logic here

// wire to hold rtl multiplier output

wire [31:0] rtl multiplier out;

// instantiate the rtl multiplier

rtl multiplier rtl mult instance_01(
.clk(S_AXI ACLK),
.a(slv_reg0[31:16]),
.b(slv_reg0[15:0]),
.product(rtl multiplier out)

)i

// User logic ends

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 8 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPSourcesH.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

e Finally, set the rtl_multiplier_out as the output of one of the AXI

registers, as shown below.

readyv N ACCED ne read & oo
L0 ITaQ ac & = 2 QITOO

assign slv_reg rden = axi_arready & 5_AXI ARVALID & ~axi_rvalid;

369 always @(*)
begin

372 case (axi
373 2'ho
374 | 2'hl
375 2'h2
376 | 2'h3

endcase
379 end

= iina for reading reqiste

_araddr [ADDR_LSB+OPT_MEM ADDR BITS:ADDR_LSB])

: reg_data_out <= slv_reg0;
: reg_data_out <= rtl multiplier out; //slv regl;
: reg_data_out <= slv_reg2;
: reg_data_out <= slv_reg3;
default :

reg_data_out <= 0;

382 ¢ always @(posedge S_AXI ACLK)

383 begin

384 if (S_AXI RRE
a5 - begin

386 . axi_rdata

87 end

3 else

29 begin

] When t

393 if (slv_re
394 I begin

SETN == 1'b0)

<= 0;

ere 1s & S ea a £55 A ARVA t

g_rden)

395 | axi_rdata <= reg_data_out; register read data

4/11/19, 11:18 AM

After saving the file(s) you will notice that the rtl_multiplier.v file has been

integrated under the AXIl file in the hierarchy. Good work so far! AiImost

there - just a few more rudimentary steps.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Page 9 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPVerilogEdits.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

PROJECT MANAGER - edit_rtl_multiplier_v1_0

Sources ? 00X
Q = & + | o
v Design Sources (2)
v @& rtl_multiplier_v1_0 (rtl_multiplier_v1_0v) (1)
v @8 rtl_multiplier_v1_0_S00_AXI_inst: tl_multiplier_v1_0_S
] hl_mult_instance_01 - tl_multiplier (rti_multiplier.v)
v IP-XACT (1)

™ componentxml

v Constraints
constrs_1
v Simulation Sources (1)
v sim_1(1)
v @& rtl_multiplier_v1_0 (rtl_multiplier_v1_0v) (1)
v @ rtl_multiplier_v1_0_S00_AXI_inst : rti_multiplier_v1_

¥ rtl_mult_instance_01 : rtl_multiplier (rtl_multipli

Hierarchy Libraries Compile Order

¢ |n the Package IP tab, click on File Groups and then on Merge changes
from the File Groups Wizard. This will OK the File Groups step with a
flattering green tick badge of great success. :)

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 10 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPSourcesH2.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

Project Summary » Package IP - rtl_multiplier X rtl_multiplier.v X | rtl_multiplier_v1_0_S00_AXlLv
Packaging Steps File Groups
«/ Identification Q = = @ + C
Library
' Compatibility Name Toas
«/ File Groups Standard
v Advanced
«/ Customization Parameters > Verilog Synthesis (3
> Verilog Simulation (2
«/ Ports and Interfaces
> Software Driver (6
«/ Addressing and Memory > Ul Layout (1
> Block Diagram (1
«/ Customization GUI
7 Review and Package

e Next, click on Review and Package and proceed with Re-Package IP.
The IP block will be packaged and you can safely close the project.

Add the IP block to the Zynq PS System

¢ In the original Vivado project containing the Zynq PS system, click on
Open Block Design in the IP Integrator section to open the design.

e As in the previous lab, to browse for an IP block, click on the Add IP (+)
button and search for our newly custom created rt/_multiplier. Double
click it to add it to the design.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 11 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPFileGroups.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

Search: rt|| (2 matches)

4F AXI Uartlite

IF rtl_multiplier_v1.0 processing_system7_0

DDR + |||====["> DDR
FIXED_IO + |||j===="> FIXED_IO

- USBIND_0 + |||
M_axi_Gro AcLk 7\/N|() M_AXI_GPO + [

FCLK_CLKO
FCLK_RESETO_N

A

ZYNQ7 Processing System

ENTER to select, ESC to cancel, Ctrl+Q for IP details r -'
+
)

e Now let Vivado do the "magic" of connecting it to the ZYNQ7 PS by
clicking on Run Connection Automation and use the default settings in
the new dialog window. The Connection Automation will add a few
necessary intermediate IP blocks. It might look scary at first, but fear
not! It's just a Processor System Reset and an AXI Interconnect here
and there, no biggie. To make it more clear (and hopefully less scary),
click on the Regenerate Layout (looks like a Refresh) button. You
should see a "neat" design as shown below.

rst_ps7_0_100M) :
| ps7_0_axi_periph

slowest_sync_clk mb_reset

ext_reset_in bus_struct_reset[0:0] — <+ S00_AXI

aux_reset_in eripheral_reset[0:0 ACLK

" : bk (0:0) itl_multiplier 0
mb_debug_sys_rst interconnect_aresetn[0:0) ARESETN —_——
dem_locked peripheral_aresetn[0:0) S00_ACLK 3 MOO_AXI + fi |4 S00_AXI
- o S00_ARESETN s00_axi_ack
Processor System Reset ;
MO0_ACLK s00_axi_aresetn
MO00_ARESETN S)
nultiplier_v1.0 (Pre-Production)

) AXI Interconnect
processing_system7_0

DOR + ||}

[DDR
FIXED_IO +||| [FIXED_IO
- USBIND_O + |||
M_AXLGRO_ACLK ZYNQ M_AXI_GPO + |

FCLK_CLKO

FCLK_RESETO_N P
J

ZYNQ7 Processing System

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 12 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPAddToDesign.PNG
http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPInDesign.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

This is all! Now, as in the previous tutorial, save all files and click on
Generate Bitstream. This will run through Synthesis, Implementation and
will generate the bitstream file. Compilation takes a while - see the status in
the upper-right corner. When completed, select Open Implemented Design.
Next, export the hardware design to SDK including the bitstream and then
lunch the SDK.

In the Implementation reports, check the resource utilization. Is it
reasonable?

Interfacing with the IP Block in Software

So far we have the Zynqg PS and the RTL Multiplier as an AXI Lite slave IP
block all nicely interconnected, but it is all useless unless we use it in an
application - so let's do that.

e Note: In case you have previous projects in the SDK, close them and
start with the most recent exported hardware platform.

e Create a File -> New -> Application Project and give it a name as
shown below.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 13 of 25

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

[Project Explorer 3 = \':r;| Y ¥ =0

J hello_world Sox ISP O X
| hello_world_bsp ewrroje
T;l Zynq_CPU_wrapper_hw_platform_(Application Project)
v [? Zynq_CPU_wrapper_hw_platform_1 o) ¥
= drivers Create a managed make application project.

[€ ps7_init_gpl.c
5 ps7_init_gpl.h
ps7_init.c

gpsz-!n!:':t I Use default location
9 ps7_inithtm

ps7_init.tcl

Project name: | hello_rtl_multiplied |

B n: | DAWS\ZynqComputerExtended\ZynqComputer.sdk\hello_rt Browse...
|4 system.hdf hoose file svstern: DOCTSUR
=| Zynq_CPU_wrapper.bit T

[

OS Platform: | standalone v
Target Hardware

Hardware Platform: | Zynq_CPU_wrapper_hw_platform_1 v | | New...
Processor: ps7_cortexad_0 v
Target Software

Language: @C OC++

32-bit
Hypervisor Guest: N/A

Board Support Package: (® Create New | hello_rtl_multiplier_bsp

Use existing

¢ In the next step, select the Hello World template and click Finish. The
SDK will generate a new application which will appear in the Project
Explorer as hello_rtl_multiplier and hello_rtl_multiplier_bsp.
o Optional: Feel free to test that this part works by programming the
FPGA, connecting the SDK Terminal and then running the default
"Hello World" on the PYNQ-Z1 board.
e Open the hello_rtl_multiplier/src/helloworld.c C-source file and update

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 14 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPApplication0.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

the file with the code provided below. Understand the code well - it's
quite simple.

#include "platform.h"
#include "xbasic_types.h"
#include "xparameters.h" // Contains definitions for peripheral RTL MULTIPLIEF

// we will use the Base Address of the RTL MULTIPLIER
Xuint32 *baseaddr p = (Xuint32 *) XPAR RTL MULTIPLIER 0 S00 AXI BASEADDR;

int main() {
init platform();
xil printf("Performing a test of the RTL MULTIPLIER... \n\r");

// Write multiplier inputs to register 0
*(baseaddr p + 0) = 0x00020003;
xil printf("Wrote to register 0: 0x%08x \n\r", *(baseaddr p + 0));

// Read multiplier output from register 1
xil printf("Read from register 1: 0x%08x \n\r", *(baseaddr p + 1));

xil printf("End of test\n\n\r");

cleanup platform();
return 0;

e Save the updated files and run the application on the PYNQ-Z1 board
as described in the previous tutorial.
o Program the FPGA
o Connect the SDK Terminal to the serial port
o Run As -> 4 Launch on Hardware (GDB)

You should see a number of warnings, but also the successful completion
of the test in the SDK Terminal, as shown below.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 15 of 25

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

* | Problems | Tasks [E) Console [] Properties [l SDK Terminal £3

Performing a test of the RTL_MULTIPLIER...
Wrote to register 0: 0x00020003
Read from register 1: 0x00000006

End of test

Custom IP block using High-Level Synthesis

There are a number of reasons why High-Level Synthesis (HLS) tools have
been developed. Most of all, it has to do with developer productivity and
code reuse, as well as other business-related reasons. RTL development in
hardware description languages such as Verilog and VHDL is slow, difficult
to debug and verify, difficult to update, etc. Moreover, it can not be done by
software engineers without an intense training on hardware development.
These translate into a high expense for businesses. High-level synthesis
attempts to partially solve this problem, by generating HDL code from a
higher level language such as C/C++. Further hardware control is enabled
by the use of HLS PRAGMAS. Designs made using HLS are typically not the
most optimal possible solutions, even after several optimizations, but are
often considered acceptable considering the low engineering cost and the
throughput gains.

In this lab, we will only get started with HLS, by reimplementing the 16-bit
multiplier using C++ and HLS to generate the AXI-Lite slave IP block.

Creating the Vivado HLS project

e Open Vivado HLS and proceed with Create New Project.
e Call the project hls_multiplier and locate it in your group's working

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 16 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPAppRun.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

folder.

e Similarly, in the Top Function field write his_multiplier. The Top Function
is the C/C++ function that will be translated to HDL by the HLS
algorithm. If it calls other functions, they will also be translated to HDL.

¢ Leave the Solution Name as default, the Period is 10 ns since the board
frequency is 100 MHz, and for the Part please select xc7z020clg400-1,
which is the chip on the PYNQ-Z1 board.

You will notice that Vivado HLS looks less "busy" compared to Vivado. This
is because Vivado HLS only simulates, synthesizes and packages the IP
block, but does not interface with the hardware directly. The output from
Vivado HLS is to be later imported into a Vivado project. Let's add the
necessary code to implement and test the HLS multiplier AXI Lite slave IP
block.

e |In the Explorer, right click on Source and select New File.... Locate the
file in the suggested directory and name it his_muiltiplier.cop. The code
for this file is given below.

unsigned int hls multiplier(unsigned short int a, unsigned short int b) {
#pragma HLS INTERFACe s axilite port=return bundle=CRTLS
#pragma HLS INTERFACe s axilite port=a bundle=CRTLS
#pragma HLS INTERFACe s axilite port=b bundle=CRTLS
unsigned int p;
p=a* b;
return p;

The code is really quite simple. The hls_multiplier C++ function takes in two
unsigned short int arguments a and b, 16-bits each, and returns an
unsigned int which is 32-bit. Inside, the product p is declared as a 32-bit
unsigned int, is given the value a * b and is returned. The pragma HLS
INTERFACE lines specify that the interface to be used is a slave AXI Lite and

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 17 of 25

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

are all into the same bundle.

4/11/19, 11:18 AM

e Next, right-click on Test Bench and select New File.... Similarly, store
the file in the suggested location and name it test_hls_muiltiplier.cpp.

The code for this file is presented below.

#include <stdio.h>

unsigned int hls multiplier(unsigned short int a, unsigned short int b);

int main() {
unsigned short int a, b;
unsigned int p;

a = 2;
b = 3;
p=0;

printf("initialized variables: a=%d, b=%d, p=%d \n", a, b, p);

p = hls multiplier(a, b);

printf("testing hls multiplier: %d * %d

return 0;

gd \n", a, b, p);

Again, the code is very simple - please read it and understand what is going

on.

Testing the his_multiplier and exporting the IP block

Vivado HLS offers a few ways to test your design, both as C Simulation and
as C/RTL Cosimulation. To start a simulation - use the comfortably ordered

buttons on the top area.

BRI Y @

.| test_hls_multiplier.cpp 2

€| hls_multiplier.cpp

e First, click the Index C Source button (and watch as it doesn't really do

anything visible).

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Page 18 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewHLSAXIIPButtons.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

e Next, click on the Run C Simulation button. In the C Simulation Dialog
feel free to enable the Clean Build option. You should see the success
message testing his_multiplier: 2 * 3 = 6.

BRSO P-VHE A-85 600

lc| test_hls_multiplier.cpp Lg) his_multiplier.cpp = hls_multiplier_csim.log 23

-INFO: [SII"“ 2] Bk ok ok ok ke Sk ke e CSII"“ Start Bk ok ok ok ke Sk ke e

2 INFO: [SIM 4] CSIM will launch GCC as the compiler.
Compiling ../../../test_hls multiplier.cpp in debug mode
Compiling ../../../hls_multiplier.cpp in debug mode
Generating csim.exe

6 initialized variables: a=2, b=3, p=0

7 testing hls_multiplier: 2 * 3 = 6

8 INFO: [SIM 1] CSim done with @ errors.

9 INFO: [SIH 3] *EXERXXXXXRXXEX CQTM flnlSh EE s S

(0, I S T

e Next, click on the C Synthesis button. This button starts the translation
of the C/C++ code to HDL (both Verilog and VHDL), synthesizes it for
the targeted chip and the targeted frequency, and generates a report
containing timing information and even an Utilization Estimate. Do you
observe anything interesting in the Utilization Estimate?

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 19 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewHLSAXIIPCSim.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

4/11/19, 11:18 AM

@ test_hls_multiplier.cpp [@ hls_multiplier.cpp

l = hls_multiplier_csim.log

l[‘g‘ﬂ Synthesis(solution1) 83_

Synthesis Report for "hls_multiplier’

‘General Information:

Date: Thu Mar 15 11:41:29 2018
Version:

Project: hls_multiplier

Solution: solutionl

Product family: zynq

Target device: xc7z020clg400-1

Performance Estimates

=] Timing (ns)

= Summary

Clock Target Estimated Uncertainty
ap_clk 10.00 7.38 1.25

= Latency (clock cycles)

= Summary

Latency Interval
min max min max Type
0 0 0 0 none

= Detail

Instance
Loop

Utilization Estimates

2017.4 (Build 2086221 on Fri Dec 15 21:13:33 MST 2017)

=] Summary

Name BRAM_18K DSP48E FF LUT
DSP - 1 - -
Expression - - - -
FIFO - - - -
Instance 0 - 112 168
Memory - . - .
Multiplexer - - - -
Register - - - -
Total 0 1 112 168
Available 280 220 106400 53200
Utilization (%) 0 ~0 ~0 ~0

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Page 20 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewHLSAXIIPCSyn1.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Utilization Estimates

=] Summary

Name BRAM_18K
DSP -
Expression -
FIFO -
Instance 0
Memory -
Multiplexer -
Register -
Total 0
Available 280
Utilization (%) 0

= Detail

= Instance

Instance

Total
=] DSP48

Instance
hls_multiplier_mubkb_U1

Memory
FIFO
Expression
Multiplexer
Register

Interface

=] Summary

RTL Ports Dir
s_axi_CRTLS_AWVALID in
s_axi_CRTLS_AWREADY out
s_axi_CRTLS_AWADDR in
s_axi_CRTLS_WVALID in
s_axi_CRTLS_WREADY out
s_axi_CRTLS_WDATA in
s_axi_CRTLS_WSTRB in
s_axi_CRTLS_ARVALID in
s_axi_CRTLS_ARREADY out
s_axi_CRTLS_ARADDR in
s_axi_CRTLS_RVALID out
s_axi_CRTLS_RREADY in
s_axi_CRTLS_RDATA out
s_axi_CRTLS_RRESP out
s_axi_CRTLS_BVALID out
s_axi_CRTLS_BREADY in
s_axi_CRTLS_BRESP out

ap_clk in
ap_rst_n in
interrupt out

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

hls_multiplier_CRTLS_s_axi_U

DSP48E FF LuT

1 112 168
220 106400 53200
~0 ~0 ~0

Module

Module
hls_multiplier_mubkb

BRAM_18K DSP48E
hls_multiplier_CRTLS_s_axi

1

Expression
i0*il

Bits Protocol Source Object

s_axi
s_axi
s_axi
s_axi
s_axi
s_axi
s_axi
s_axi
s_axi

s_axi
s_axi
s_axi
s_axi
s_axi
s_axi
s_axi

CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS
CRTLS

0
0

C Type
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar
scalar

ap_ctrl_hs hls_multiplier return value
ap_ctrl_hs hls_multiplier return value
1 ap_ctrl_hs hls_multiplier return value

1
1
6
1
1
2
4
1
1
6 s_axi
1
1
2
2
1
1
2
1
1

4/11/19, 11:18 AM

Page 21 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewHLSAXIIPCSyn2.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

e Now that everything seems reasonable at the C Simulation level and at
the C Synthesis level, click on the Run C/RTL Cosimulation button. Use
the default settings in the Co-simulation Dialog. This can take a long
time since this is quite a powerful operation. It simulates both the C
and the generated RTL and compares the final results and ensures that
they match. In the generated report you are expecting the word Pass -
which means the test was successful. Now that all these tests passed,
it's time to export the design to an IP block.

e Click on the Export RTL button and go with the default options. You
can now close Vivado HLS.

Adding the his_multiplier AXI Lite Slave IP Block to your
Vivado design

¢ In Vivado, go back to Tools -> Settings... and under /P -> Repository
add the hls_multiplier/solution1/impl/ip directory. This will allow Vivado
to find the IP we just created using Vivado HLS.

e Next, in the Block Design, click on Add IP and search for the
his_multiplier. Add it to your design and Run Connection Automation to
automatically have it connected to the AXI Interconnect.

e Save all files and click on Generate Bitstream to re-run Synthesis and
Implementation over the updated design. Check the resource
utilization and look over the implementation. Example results are shown
below. In the second image, the hls_multiplier area is highlighted
yellow, while the rtl_multiplier area is highlighted red.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 22 of 25

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

<

Utilization

Resource
LUT
LUTRAM
FF

DSP
BUFG

~ [@ Zyng_CPU_i (Zyna_
> Nets (524
> Leaf Cells (1
> hls_multiplier_0 (Zyng_
> processing_system7_0 (Zyng_

> ps7_0_axi_periph (Zynq_CPU_ps7_0_axi_periph

> rst_ps7_0_100M (Zyng_

Utilization
658
62
940

> Bl [i_muttiplier_0 (zynq_cPL

Cell Properties

[rti_muttiplier_0 <
Name: Zynq_CPU_ilrtl_multiplier_0
Parent: Zynq_CPU_i

Post-Synthesis
Available
53200
17400
106400
220
32

Now let's interface both multipliers into Xilinx SDK.

Interfacing with the RTL and HLS blocks in Software

e As before, Export Hardware... and Launch SDK.
e Close the previous hello_rtl_multiplier and hello_rtl_multiplier_bsp
projects and create a new application called hello_hls_rtl_m starting
with the Hello World template.
¢ |In the helloworld.c file paste the following code.

Media:Hello _hls rtl m.c

| Post-Implementation

Graph | Table

Utilization %

The first part of this code does the same as before, testing the
rtl_multiplier. The second part of the code tests the hls_multiplier. Vivado

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

1.24
0.36
0.88
0.91
313

4/11/19, 11:18 AM

Page 23 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewAXIIPTotalUtil.PNG
http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewAXIIPHighlighted.PNG
http://venividiwiki.ee.virginia.edu/mediawiki/images/c/c8/Hello_hls_rtl_m.c

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

HLS generates not only an HDL implementation of the IP block, but also
functions that enable the user to use the IP block correctly. The Code might
appear more involved, but try to understand it.

e Build and run the code on the PYNQ-Z1 board. The result from the SDK
Terminal is shown below.

* | Problems =] Tasks [E) Console [Properties [l SDK Terminal &3

Performing a test of the RTL_MULTIPLIER...
Wrote to register 0: 0x00020003
Read from register 1: 0x00000006

End of test RTL_MULTIPLIER

Performing a test of the HLS_MULTIPLIER...
Write a: 0x00000002

Write b: 0x00000003

Started hls_multiplier

Read p: 0x00000006

End of test HLS_MULTIPLIER

Questions

e How does the Zyng PS communicate with the IP blocks we created in
this lab?

e What was the resource utilization of the rtl_multiplier and the
his_multiplier?

¢ Imagine that you have to create an IP block implementing 10 different
sorting algorithms. Would you rather use a hardware description
language or High-level Synthesis? Why?

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 24 of 25

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewAXIIPBoardTest.PNG

ToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki 4/11/19, 11:18 AM

Assignment

Using Vivado HLS, implement an IP block as an AXI Lite Slave that takes in
two numbers as arguments and returns the div and mod of them. Add the
his_divider to your Block Design and test it in the SDK. Next, implement an
ALU (Arithmetic Logic Unit), i.e. a block that can perform a number of
arithmetic operations (product, addition, subtraction, division, etc.). The
ALU takes as arguments the number values and also the operation, and
returns the result.

Bonus: If you would like a bit of a challenge - measure the execution time of
AES when using only the ARM CPU, and then when using the FPGA AES IP
block, and observe the difference.

References

This tutorial was used as a reference for the RTL multiplier

This YouTube tutorial is similar for the RTL multiplier part

Xilinx Vivado User Guide on Creating and Packaging Custom IP

"High-Level Synthesis for FPGAs: From Prototyping.to Deployment" - great
paper by Jason Cong

Great video tutorial on making an AXI Lite slave IP block

Get the PYNQ-Z1 board files for Vivado

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP Page 25 of 25

http://www.fpgadeveloper.com/2014/08/creating-a-custom-ip-block-in-vivado.html
https://youtu.be/_F124UaZ-d0
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1118-vivado-creating-packaging-custom-ip.pdf
http://ieeexplore.ieee.org/abstract/document/5737854/
https://youtu.be/aDaJIRoTlzQ
https://github.com/cathalmccabe/pynq-z1_board_files

