
4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 1 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

ToolsXilinxLabsRTLHLSIP
Creating and using custom IP blocks both in
Verilog and using High-Level Synthesis
Back to Xilinx Labs

Objectives

Learn to create custom IP blocks at RTL level (Verilog, VHDL)

Use AXI bus to connect an IP block with the Zynq PS

Learn to use High-level Synthesis (HLS) to create a similar IP block in

C/C++

Test both IP blocks using the SDK

Custom IP block at RTL level

A system on a chip consisting of both a Hard Processor System and FPGA

fabric, such as the Zynq-7000, offers the opportunity of offloading

computation to the FPGA. Parallelizable algorithms can thus be accelerated,

or more computations can be executed in parallel.

In this section, we will create a simple custom AXI IP block that multiplies

two numbers and will connect it to the Zynq PS. The multiplier will take as

input two 16-bit unsigned numbers and will output the product as one 32-

bit unsigned number. A single 32-bit write to the IP block will contain the

two 16-bit inputs, separated into the lower and higher 16 bits. A single 32-

bit read from the peripheral will contain the result from the multiplication of

the two 16-bit inputs.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/Xilinx

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 2 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

This design doesnʼt really make much sense as an accelerator, but it is a

good learning example.

Create and Package the IP block

Feel free to start with any previously made Vivado project that contains a

Zynq system. For example, you can start with the system you created in the

previous lab, Building a basic ZYNQ system on the PYNQ-Z1 board. To

make your work easier, you can copy-paste the project ZynqComputer to
ZynqComputerExtended and open it in Vivado. Now that you have a project

with a Zynq PS System open in Vivado, follow the instructions below.

Start by going to menu Tools -> Create and Package New IP....
Read the overview of the Create and Package New IP wizard and

then click Next.
We are interested in a new AXI4 peripheral, therefore select the Create
a new AXI4 peripheral and click Next.

Note: If you've been attentive in the previous tutorial and

homework assignment, you might still remember what the AXI

stands for. It is also reasonable that you forgot, considering spring

break, etc. Either way, you are encouraged to consult this

reference guide and other sources to learn more about AXI, AMBA,

and how it compares to the Avalon Interface.

Fill in the Peripheral Details fields with proper values. For the IP
location, select a directory in your group folder, in which you will store

all your custom IP blocks.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsHelloZynq
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.altera.com/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 3 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

On the Add Interfaces page, use the default 32-bit AXI4 Lite Slave

interface.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPDescr.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 4 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

On the last page, select Edit IP and click Finish. This will open another

Vivado window in which we will implement the peripheral.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPInterfaces.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 5 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Edit the IP block

The multiplier Verilog code is simple since it only multiplies two numbers.

For example, this code will do:

module rtl_multiplier(
 input clk,
 input [15:0] a,
 input [15:0] b,
 output [31:0] product
);

 reg [31:0] productReg;
 assign product = productReg;
 always @(posedge clk) begin
 productReg <= a * b;
 end

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPEditFin.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 6 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

endmodule

Media:rtl_multiplier.v

Save this file as rtl_multiplier.v in a directory such as ip_repo\src\ for

later access.

From the pannel Flow Navigator on the left, click Add Sources and, in

the new Add Sources window, select Add or create design sources.

Next, select the previously saved ip_repo\src\rtl_multiplier.v file and

have the option Copy sources into IP Directory checked. Click Finish
and the file will be added to the Design Sources.

http://venividiwiki.ee.virginia.edu/mediawiki/images/6/68/Rtl_multiplier.v
http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPAddSrc.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 7 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

At this point the rtl_multiplier.v file is separately part of the Design Sources.

Let's connect it to the AXI IP block.

Expand the top branch (rtl_multiplier_v1_0.v) and open the file

rtl_multiplier_v1_0_S00_AXI_inst by double-clicking on it.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPAddSrc2.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 8 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Scroll down to the end of the file where the comment Add user logic
here is and insert the code below. The code below instantiates the

rtl_multiplier module inside the AXI IP block and connects the clock to

the AXI clock, the inputs a and b to the 16 MSB and LSB of the first

register (slv_reg0) and the output product to a created wire

rtl_multiplier_out.

 // Add user logic here
 // wire to hold rtl_multiplier output
 wire [31:0] rtl_multiplier_out;
 // instantiate the rtl_multiplier
 rtl_multiplier rtl_mult_instance_01(
 .clk(S_AXI_ACLK),
 .a(slv_reg0[31:16]),
 .b(slv_reg0[15:0]),
 .product(rtl_multiplier_out)
);
 // User logic ends

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPSourcesH.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 9 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Finally, set the rtl_multiplier_out as the output of one of the AXI

registers, as shown below.

After saving the file(s) you will notice that the rtl_multiplier.v file has been

integrated under the AXI file in the hierarchy. Good work so far! Almost

there - just a few more rudimentary steps.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPVerilogEdits.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 10 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

In the Package IP tab, click on File Groups and then on Merge changes
from the File Groups Wizard. This will OK the File Groups step with a

flattering green tick badge of great success. :)

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPSourcesH2.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 11 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Next, click on Review and Package and proceed with Re-Package IP.

The IP block will be packaged and you can safely close the project.

Add the IP block to the Zynq PS System

In the original Vivado project containing the Zynq PS system, click on

Open Block Design in the IP Integrator section to open the design.

As in the previous lab, to browse for an IP block, click on the Add IP (+)

button and search for our newly custom created rtl_multiplier. Double

click it to add it to the design.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPFileGroups.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 12 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Now let Vivado do the "magic" of connecting it to the ZYNQ7 PS by

clicking on Run Connection Automation and use the default settings in

the new dialog window. The Connection Automation will add a few

necessary intermediate IP blocks. It might look scary at first, but fear

not! It's just a Processor System Reset and an AXI Interconnect here

and there, no biggie. To make it more clear (and hopefully less scary),

click on the Regenerate Layout (looks like a Refresh) button. You

should see a "neat" design as shown below.

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPAddToDesign.PNG
http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPInDesign.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 13 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

This is all! Now, as in the previous tutorial, save all files and click on

Generate Bitstream. This will run through Synthesis, Implementation and

will generate the bitstream file. Compilation takes a while - see the status in

the upper-right corner. When completed, select Open Implemented Design.

Next, export the hardware design to SDK including the bitstream and then

lunch the SDK.

In the Implementation reports, check the resource utilization. Is it
reasonable?

Interfacing with the IP Block in Software

So far we have the Zynq PS and the RTL Multiplier as an AXI Lite slave IP

block all nicely interconnected, but it is all useless unless we use it in an

application - so let's do that.

Note: In case you have previous projects in the SDK, close them and

start with the most recent exported hardware platform.

Create a File -> New -> Application Project and give it a name as

shown below.

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 14 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

In the next step, select the Hello World template and click Finish. The

SDK will generate a new application which will appear in the Project
Explorer as hello_rtl_multiplier and hello_rtl_multiplier_bsp.

Optional: Feel free to test that this part works by programming the

FPGA, connecting the SDK Terminal and then running the default

"Hello World" on the PYNQ-Z1 board.

Open the hello_rtl_multiplier/src/helloworld.c C-source file and update

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPApplication0.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 15 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

the file with the code provided below. Understand the code well - it's

quite simple.

Save the updated files and run the application on the PYNQ-Z1 board

as described in the previous tutorial.

Program the FPGA

Connect the SDK Terminal to the serial port

Run As -> 4 Launch on Hardware (GDB)

You should see a number of warnings, but also the successful completion

of the test in the SDK Terminal, as shown below.

#include "platform.h"
#include "xbasic_types.h"
#include "xparameters.h" // Contains definitions for peripheral RTL_MULTIPLIER

// we will use the Base Address of the RTL_MULTIPLIER
Xuint32 *baseaddr_p = (Xuint32 *) XPAR_RTL_MULTIPLIER_0_S00_AXI_BASEADDR;

int main() {
 init_platform();
 xil_printf("Performing a test of the RTL_MULTIPLIER... \n\r");

 // Write multiplier inputs to register 0
 *(baseaddr_p + 0) = 0x00020003;
 xil_printf("Wrote to register 0: 0x%08x \n\r", *(baseaddr_p + 0));

 // Read multiplier output from register 1
 xil_printf("Read from register 1: 0x%08x \n\r", *(baseaddr_p + 1));

 xil_printf("End of test\n\n\r");

 cleanup_platform();
 return 0;
}

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 16 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Custom IP block using High-Level Synthesis

There are a number of reasons why High-Level Synthesis (HLS) tools have

been developed. Most of all, it has to do with developer productivity and

code reuse, as well as other business-related reasons. RTL development in

hardware description languages such as Verilog and VHDL is slow, difficult

to debug and verify, difficult to update, etc. Moreover, it can not be done by

software engineers without an intense training on hardware development.

These translate into a high expense for businesses. High-level synthesis

attempts to partially solve this problem, by generating HDL code from a

higher level language such as C/C++. Further hardware control is enabled

by the use of HLS PRAGMAS. Designs made using HLS are typically not the

most optimal possible solutions, even after several optimizations, but are

often considered acceptable considering the low engineering cost and the

throughput gains.

In this lab, we will only get started with HLS, by reimplementing the 16-bit

multiplier using C++ and HLS to generate the AXI-Lite slave IP block.

Creating the Vivado HLS project

Open Vivado HLS and proceed with Create New Project.
Call the project hls_multiplier and locate it in your group's working

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewRTLAXIIPAppRun.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 17 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

folder.

Similarly, in the Top Function field write hls_multiplier. The Top Function
is the C/C++ function that will be translated to HDL by the HLS

algorithm. If it calls other functions, they will also be translated to HDL.

Leave the Solution Name as default, the Period is 10 ns since the board

frequency is 100 MHz, and for the Part please select xc7z020clg400-1,

which is the chip on the PYNQ-Z1 board.

You will notice that Vivado HLS looks less "busy" compared to Vivado. This

is because Vivado HLS only simulates, synthesizes and packages the IP

block, but does not interface with the hardware directly. The output from

Vivado HLS is to be later imported into a Vivado project. Let's add the

necessary code to implement and test the HLS multiplier AXI Lite slave IP

block.

In the Explorer, right click on Source and select New File.... Locate the

file in the suggested directory and name it hls_multiplier.cpp. The code

for this file is given below.

unsigned int hls_multiplier(unsigned short int a, unsigned short int b) {
#pragma HLS INTERFACe s_axilite port=return bundle=CRTLS
#pragma HLS INTERFACe s_axilite port=a bundle=CRTLS
#pragma HLS INTERFACe s_axilite port=b bundle=CRTLS
 unsigned int p;
 p = a * b;
 return p;
}

The code is really quite simple. The hls_multiplier C++ function takes in two

unsigned short int arguments a and b, 16-bits each, and returns an

unsigned int which is 32-bit. Inside, the product p is declared as a 32-bit

unsigned int, is given the value a * b and is returned. The pragma HLS
INTERFACE lines specify that the interface to be used is a slave AXI Lite and

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 18 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

are all into the same bundle.

Next, right-click on Test Bench and select New File.... Similarly, store

the file in the suggested location and name it test_hls_multiplier.cpp.

The code for this file is presented below.

#include <stdio.h>
unsigned int hls_multiplier(unsigned short int a, unsigned short int b);

int main() {
 unsigned short int a, b;
 unsigned int p;
 a = 2;
 b = 3;
 p = 0;
 printf("initialized variables: a=%d, b=%d, p=%d \n", a, b, p);
 p = hls_multiplier(a, b);
 printf("testing hls_multiplier: %d * %d = %d \n", a, b, p);
 return 0;
}

Again, the code is very simple - please read it and understand what is going

on.

Testing the hls_multiplier and exporting the IP block

Vivado HLS offers a few ways to test your design, both as C Simulation and

as C/RTL Cosimulation. To start a simulation - use the comfortably ordered

buttons on the top area.

First, click the Index C Source button (and watch as it doesn't really do

anything visible).

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewHLSAXIIPButtons.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 19 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Next, click on the Run C Simulation button. In the C Simulation Dialog
feel free to enable the Clean Build option. You should see the success

message testing hls_multiplier: 2 * 3 = 6.

Next, click on the C Synthesis button. This button starts the translation

of the C/C++ code to HDL (both Verilog and VHDL), synthesizes it for

the targeted chip and the targeted frequency, and generates a report

containing timing information and even an Utilization Estimate. Do you
observe anything interesting in the Utilization Estimate?

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewHLSAXIIPCSim.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 20 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewHLSAXIIPCSyn1.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 21 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewHLSAXIIPCSyn2.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 22 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Now that everything seems reasonable at the C Simulation level and at

the C Synthesis level, click on the Run C/RTL Cosimulation button. Use

the default settings in the Co-simulation Dialog. This can take a long

time since this is quite a powerful operation. It simulates both the C

and the generated RTL and compares the final results and ensures that

they match. In the generated report you are expecting the word Pass -

which means the test was successful. Now that all these tests passed,

it's time to export the design to an IP block.

Click on the Export RTL button and go with the default options. You

can now close Vivado HLS.

Adding the hls_multiplier AXI Lite Slave IP Block to your
Vivado design

In Vivado, go back to Tools -> Settings... and under IP -> Repository
add the hls_multiplier/solution1/impl/ip directory. This will allow Vivado

to find the IP we just created using Vivado HLS.

Next, in the Block Design, click on Add IP and search for the

hls_multiplier. Add it to your design and Run Connection Automation to

automatically have it connected to the AXI Interconnect.
Save all files and click on Generate Bitstream to re-run Synthesis and

Implementation over the updated design. Check the resource

utilization and look over the implementation. Example results are shown

below. In the second image, the hls_multiplier area is highlighted

yellow, while the rtl_multiplier area is highlighted red.

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 23 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Now let's interface both multipliers into Xilinx SDK.

Interfacing with the RTL and HLS blocks in Software

As before, Export Hardware... and Launch SDK.

Close the previous hello_rtl_multiplier and hello_rtl_multiplier_bsp
projects and create a new application called hello_hls_rtl_m starting

with the Hello World template.

In the helloworld.c file paste the following code.

Media:Hello_hls_rtl_m.c

The first part of this code does the same as before, testing the

rtl_multiplier. The second part of the code tests the hls_multiplier. Vivado

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewAXIIPTotalUtil.PNG
http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewAXIIPHighlighted.PNG
http://venividiwiki.ee.virginia.edu/mediawiki/images/c/c8/Hello_hls_rtl_m.c

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 24 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

HLS generates not only an HDL implementation of the IP block, but also

functions that enable the user to use the IP block correctly. The Code might

appear more involved, but try to understand it.

Build and run the code on the PYNQ-Z1 board. The result from the SDK

Terminal is shown below.

Questions

How does the Zynq PS communicate with the IP blocks we created in

this lab?

What was the resource utilization of the rtl_multiplier and the

hls_multiplier?
Imagine that you have to create an IP block implementing 10 different

sorting algorithms. Would you rather use a hardware description

language or High-level Synthesis? Why?

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/File:NewAXIIPBoardTest.PNG

4/11/19, 11'18 AMToolsXilinxLabsRTLHLSIP - UVA ECE & BME wiki

Page 25 of 25http://venividiwiki.ee.virginia.edu/mediawiki/index.php/ToolsXilinxLabsRTLHLSIP

Assignment

Using Vivado HLS, implement an IP block as an AXI Lite Slave that takes in

two numbers as arguments and returns the div and mod of them. Add the

hls_divider to your Block Design and test it in the SDK. Next, implement an

ALU (Arithmetic Logic Unit), i.e. a block that can perform a number of

arithmetic operations (product, addition, subtraction, division, etc.). The

ALU takes as arguments the number values and also the operation, and

returns the result.

Bonus: If you would like a bit of a challenge - measure the execution time of

AES when using only the ARM CPU, and then when using the FPGA AES IP

block, and observe the difference.

References

This tutorial was used as a reference for the RTL multiplier

This YouTube tutorial is similar for the RTL multiplier part

Xilinx Vivado User Guide on Creating and Packaging Custom IP

"High-Level Synthesis for FPGAs: From Prototyping to Deployment" - great

paper by Jason Cong

Great video tutorial on making an AXI Lite slave IP block

Get the PYNQ-Z1 board files for Vivado

http://www.fpgadeveloper.com/2014/08/creating-a-custom-ip-block-in-vivado.html
https://youtu.be/_F124UaZ-d0
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1118-vivado-creating-packaging-custom-ip.pdf
http://ieeexplore.ieee.org/abstract/document/5737854/
https://youtu.be/aDaJIRoTlzQ
https://github.com/cathalmccabe/pynq-z1_board_files

