
Chapter 7: HDL Coding Techniques

FSM Components
• XST features:

– Specific inference capabilities for synchronous Finite State Machine (FSM)
components.

– Built-in FSM encoding strategies to accommodate your optimization goals.

• You may also instruct XST to follow your own encoding scheme.

• FSM extraction is enabled by default.

• Use Automatic FSM Extraction to disable FSM extraction.

FSM Description
• XST supports specification of Finite State Machine (FSM) in both Moore and Mealy

form.

• An FSM consists of:

– State register

– Next state function

– Outputs function

HDL Coding Methods
• You can choose among many HDL coding methods. Your choice depends on your

goals with respect to code compactness and readability.

• The following HDL coding methods:

– Ensure maximum readability.

– Maximize the ability of XST to identify the FSM.

• Method One

Describe all three components of the FSM in a single sequential process or always
block.

• Method Two

1. Describe the state register and next state function together in a sequential
process or always block.

2. Describe the outputs function in a separate combinatorial process or always
block.

• Method Three

1. Describe the state register in a sequential process or always block.

2. Describe the next state and outputs functions together in a separate
combinatorial process or always block.

• Method Four

1. Describe the state register in a sequential process or always block.

2. Describe the next state function in a first combinatorial process or always block.

3. Describe the outputs function in a second separate combinatorial process or
always block.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 14.5) March 20, 2013 www.xilinx.com 269

Send Feedback



Chapter 7: HDL Coding Techniques

FSM Representation Incorporating Mealy and Moore Machines
Diagram

FSM With Three Processes Diagram

State Registers
• Specify a reset or power-up state for XST to identify a Finite State Machine (FSM).

• The State Register can be asynchronously or synchronously reset to a particular state.

• Xilinx® recommends using synchronous reset logic over asynchronous reset logic
for an FSM.

Specifying State Registers in VHDL
You can specify a State Register in VHDL with:

• Standard Type

• Enumerated Type

Standard Type
Specify the State Register with a Standard Type such as:

• integer

• bit_vector

• std_logic_vector

Enumerated Type
1. Define an Enumerated Type containing all possible state values.

2. Declare the state register with that type.

type state_type is (state1, state2, state3, state4);
signal state : state_type;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
270 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback



Chapter 7: HDL Coding Techniques

Specifying State Registers in Verilog
• A State Register type in Verilog is:

– An integer, or
– A set of defined parameters.

parameter [3:0]
s1 = 4’b0001,
s2 = 4’b0010,
s3 = 4’b0100,
s4 = 4’b1000;

reg [3:0] state;

• Modify these parameters to represent different state encoding schemes.

Next State Equation
• Next state equations can be described:

– Directly in the sequential process, or
– In a separate combinatorial process

• The sensitivity list of a separate combinatorial process contains:
– The state signal
– All Finite State Machine (FSM) inputs

• The simplest coding example is based on a case statement, the selector of which is
the current state signal.

Unreachable States
XST detects and reports unreachable states.

FSM Outputs
• Non-registered outputs are described in:

– The combinatorial process, or
– Concurrent assignments

• Registered outputs must be assigned in the sequential process.

FSM Inputs
• Registered inputs are described using internal signals.
• Internal signals are assigned in the sequential process.

State Encoding Techniques
• XST state encoding techniques accommodate different optimization goals, and

different Finite State Machine (FSM) patterns.
• Use FSM Encoding Algorithm to select the state encoding technique.
• For more information, see Chapter 9, Design Constraints.

Auto State Encoding
XST tries to select the best suited encoding method for a given FSM.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 14.5) March 20, 2013 www.xilinx.com 271

Send Feedback



Chapter 7: HDL Coding Techniques

One-Hot State Encoding
• Is the default encoding scheme.

• Is usually a good choice for optimizing speed or reducing power dissipation.

• Assigns a distinct bit of code to each FSM state.

• Implements the State Register with one flip-flop for each state.

– In a given clock cycle during operation, one and only one bit of the State
Register is asserted.

– Only two bits toggle during a transition between two states.

Gray State Encoding
• Guarantees that only one bit switches between two consecutive states.

• Is appropriate for controllers exhibiting long paths without branching.

• Minimizes hazards and glitches.

• Gives good results when implementing the State Register with T Flip-Flops.

• Can be used to minimize power dissipation.

Compact State Encoding
• Minimizes the number of bits in the state variables and flip-flops. This technique is

based on hypercube immersion.

• Is appropriate when trying to optimize area.

Johnson State Encoding
Beneficial when using state machines containing long paths with no branching (as in
Gray State Encoding).

Sequential State Encoding
• Identifies long paths

• Applies successive radix two codes to the states on these paths.

• Minimizes next state equations.

Speed1 State Encoding
• Is oriented for speed optimization.

• The number of bits for a State Register depends on the specific FSM, but is generally
greater than the number of FSM states.

User State Encoding
XST uses the original encoding specified in the HDL file.

User State Encoding Example
If the State Register is described based on an enumerated type:

• Use Enumerated Encoding to assign a specific binary value to each state.

• Select User State Encoding to instruct XST to follow your coding scheme.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
272 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback



Chapter 7: HDL Coding Techniques

Implementing FSM Components on Block RAM Resources
• Finite State Machine (FSM) components are implemented on slice logic.

– To save slice logic resources, instruct XST to implement FSM components in
block RAM.

– Implementing FSM components in block RAM can enhance the performance of
large FSM components.

• To select the implementation for slice logic, use FSM Style to choose between:

– default implementation

– block RAM implementation

• The values for FSM Style are:

– lut (default)

– bram

• If XST cannot implement an FSM in block RAM:

– XST implements the state machine in slice logic.

– XST issues a warning during Advanced HDL Synthesis.

• The failure to implement an FSM in block RAM usually occurs when the FSM has
an asynchronous reset.

FSM Safe Implementation
Safe Finite State Machine (FSM) design is a subject of debate. There is no single perfect
solution. Xilinx® recommends that you carefully review the following sections before
deciding on your implementation strategy.

Optimization
• Optimization is standard for the great majority of applications. Most applications

operate in normal external conditions. Their temporary failure due to a single event
upset does not have critical consequences.

• XST detects and optimizes the following by default:

– Unreachable states (both logical and physical)

– Related transition logic

• Optimization ensures implementation of a state machine that:

– Uses minimal device resources.

– Provides optimal circuit performance.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 14.5) March 20, 2013 www.xilinx.com 273

Send Feedback



Chapter 7: HDL Coding Techniques

Preventing Optimization
• Some applications operate in external conditions in which the potentially

catastrophic impact of soft errors cannot be ignored. Optimization is not appropriate
for these applications.

• These soft errors are caused primarily by:
– Cosmic rays, or
– Alpha particles from the chip packaging

• State machines are sensible to soft errors. A state machine may never resume
normal operation after an external condition sends it to an illegal state. For the
circuit to be able to detect and recover from those errors, unreachable states must
not be optimized away.

• Use Safe Implementation to prevent optimization. XST creates additional logic
allowing the state machine to:
– Detect an illegal transition.
– Return to a valid recovery state.

• XST selects the reset state as the recovery state by default. If no reset state is
available, XST selects the power-up state. Use Safe Recovery State to manually
define a specific recovery state.

One-Hot Encoding Versus Binary Encoding
• With binary State Encoding Techniques (such as Compact, Sequential, and Gray),

the state register is implemented with a minimum number of Flip-Flops. One-Hot
Encoding implies a larger number of Flip-Flops (one for each valid state). This
increases the likelihood of a single event upset affecting the State Register.

• Despite this drawback, One-Hot Encoding has a significant topological benefit.
A Hamming distance of 2 makes all single bit errors easily detectable. An illegal
transition resulting from a single bit error always sends the state machine to an
invalid state. The XST safe implementation logic ensures that any such error is
detected and cleanly recovered from.

• An equivalent binary coded state machine has a Hamming distance of 1. As a result,
a single bit error may send the state machine to an unexpected but valid state. If the
number of valid states is a power of 2, all possible code values correspond to a valid
state, and a soft error always produces such an outcome. In that event, the circuit
does not detect that an illegal transition has occurred, and that the state machine has
not executed its normal state sequence. Such a random and uncontrolled recovery
may not be acceptable.

Recovery-Only States
• Xilinx recommends that you define a recovery state that is none of the normal

operating states of your state machine.
• Defining a recovery-only state allows you to:

– Detect that the state machine has been affected by a single event upset.
– Perform specific actions before resuming normal operation. Such actions include

flagging the recovery condition to the rest of the circuit or to a circuit output.
• Directly recovering to a normal operation state is sufficient, provided that the faulty

state machine does not need to:
– Inform the rest of the circuit of its temporary condition, or
– Perform specific actions following a soft error.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
274 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback



Chapter 7: HDL Coding Techniques

FSM Safe Implementation VHDL Coding Example
--
-- Finite State Machine Safe Implementation VHDL Coding Example
-- One-hot encoding
-- Recovery-only state
--
-- Download: http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/state_machines/safe_fsm.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity safe_fsm is

port(
clk : in std_logic;
rst : in std_logic;
c : in std_logic_vector(3 downto 0);
d : in std_logic_vector(3 downto 0);
q : out std_logic_vector(3 downto 0));

end safe_fsm;

architecture behavioral of safe_fsm is

type state_t is ( idle, state0, state1, state2, recovery );
signal state, next_state : state_t;

attribute fsm_encoding : string;
attribute fsm_encoding of state : signal is "one-hot";
attribute safe_implementation : string;
attribute safe_implementation of state : signal is "yes";
attribute safe_recovery_state : string;
attribute safe_recovery_state of state : signal is "recovery";

begin

process(clk)
begin
if rising_edge(clk) then
if rst = ’1’ then
state <= idle;

else
state <= next_state;

end if;
end if;

end process;

process(state, c, d)
begin

next_state <= state;

case state is
when idle =>
if c(0) = ’1’ then
next_state <= state0;

end if;
q <= "0000";

when state0 =>
if c(0) = ’1’ and c(1) = ’1’ then
next_state <= state1;

end if;
q <= d;

when state1 =>
next_state <= state2;
q <= "1100";

when state2 =>
if c(1) = ’0’ then
next_state <= state1;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 14.5) March 20, 2013 www.xilinx.com 275

Send Feedback



Chapter 7: HDL Coding Techniques

elsif c(2) = ’1’ then
next_state <= state2;

elsif c(3) = ’1’ then
next_state <= idle;

end if;
q <= "0101";

when recovery =>
next_state <= state0;
q <= "1111";

end case;

end process;

end behavioral;

Verilog Support for FSM Safe Implementation
• Because Verilog does not provide enumerated types, Verilog support for FSM safe

implementation is more restrictive than VHDL.
• Recommendation Follow these coding guidelines for proper implementation of

the state machine:
– Manually enforce the desired encoding strategy.

♦ Explicitly define the code value for each valid state.
♦ Set FSM Encoding Algorithm to User.

– Use localparam or ‘define for readability to symbolically designate the various
states in the state machine description.

– Hard code the recovery state value as one of the following, since it cannot be
referred to symbolically in a Verilog attribute specification:
♦ A string, directly in the attribute statement, or
♦ A ‘define, as shown in the following coding example

FSM Safe Implementation Verilog Coding Example
//
// Finite State Machine Safe Implementation Verilog Coding Example
// One-hot encoding
// Recovery-only state
//
// Download: http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/state_machines/safe_fsm.v
//
module v_safe_fsm (clk, rst, c, d, q);

input clk;
input rst;
input [3:0] c;
input [3:0] d;
output reg [3:0] q;

localparam [4:0]
idle = 5’b00001,
state0 = 5’b00010,
state1 = 5’b00100,
state2 = 5’b01000,
recovery = 5’b10000;

‘define recovery_attr_val "10000"

(* fsm_encoding = "user",
safe_implementation = "yes",
safe_recovery_state = ‘recovery_attr_val *)
// alternatively: safe_recovery_state = "10000" *)

reg [4:0] state;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
276 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback



Chapter 7: HDL Coding Techniques

reg [4:0] next_state;

always @ (posedge clk)
begin

if (rst)
state <= idle;

else
state <= next_state;

end

always @(*)
begin

next_state <= state;

case (state)

idle: begin
if (c[0])
next_state <= state0;

q <= 4’b0000;
end

state0: begin
if (c[0] && c[1])
next_state <= state1;

q <= d;
end

state1: begin
next_state <= state2;
q <= 4’b1100;

end

state2: begin
if (~c[1])
next_state <= state1;

else
if (c[2])
next_state <= state2;

else
if (c[3])
next_state <= idle;

q <= 4’b0101;
end

recovery: begin
next_state <= state0;
q <= 4’b1111;

end

default: begin
next_state <= recovery;
q <= 4’b1111;

end

endcase

end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 14.5) March 20, 2013 www.xilinx.com 277

Send Feedback



Chapter 7: HDL Coding Techniques

FSM Related Constraints
• Automatic FSM Extraction

• FSM Style

• FSM Encoding Algorithm

• Enumerated Encoding

• Safe Implementation

• Safe Recovery State

FSM Reporting
The XST log provides detailed information about Finite State Machine (FSM)
components and their encoding.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
278 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback



Chapter 7: HDL Coding Techniques

FSM Reporting Example
=========================================================================
* HDL Synthesis *
=========================================================================

Synthesizing Unit <fsm_1>.
Found 1-bit register for signal <outp>.
Found 2-bit register for signal <state>.
Found finite state machine <FSM_0> for signal <state>.
-----------------------------------------------------------------------
| States | 4 |
| Transitions | 5 |
| Inputs | 1 |
| Outputs | 2 |
| Clock | clk (rising_edge) |
| Reset | reset (positive) |
| Reset type | asynchronous |
| Reset State | s1 |
| Power Up State | s1 |
| Encoding | gray |
| Implementation | LUT |
-----------------------------------------------------------------------
Summary:

inferred 1 D-type flip-flop(s).
inferred 1 Finite State Machine(s).
Unit <fsm_1> synthesized.

=========================================================================
HDL Synthesis Report

Macro Statistics
# Registers : 1
1-bit register : 1
# FSMs : 1

=========================================================================

=========================================================================
* Advanced HDL Synthesis *
=========================================================================

=========================================================================
Advanced HDL Synthesis Report

Macro Statistics
# FSMs : 1
# Registers : 1
Flip-Flops : 1
# FSMs : 1

=========================================================================

=========================================================================
* Low Level Synthesis *
=========================================================================
Optimizing FSM <state> on signal <state[1:2]> with gray encoding.
-------------------
State | Encoding
-------------------
s1 | 00
s2 | 11
s3 | 01
s4 | 10
-------------------

FSM Coding Examples
For update information, see “Coding Examples” in the Introduction.

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 14.5) March 20, 2013 www.xilinx.com 279

Send Feedback



Chapter 7: HDL Coding Techniques

FSM Described with a Single Process VHDL Coding Example
--
-- State Machine described with a single process
--
-- Download: http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
-- File: HDL_Coding_Techniques/state_machines/state_machines_1.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;

entity fsm_1 is
port ( clk, reset, x1 : IN std_logic;

outp : OUT std_logic);
end entity;

architecture behavioral of fsm_1 is
type state_type is (s1,s2,s3,s4);
signal state : state_type ;

begin

process (clk)
begin

if rising_edge(clk) then
if (reset =’1’) then

state <= s1;
outp <= ’1’;

else
case state is

when s1 => if x1=’1’ then
state <= s2;
outp <= ’1’;

else
state <= s3;
outp <= ’0’;

end if;
when s2 => state <= s4; outp <= ’0’;
when s3 => state <= s4; outp <= ’0’;
when s4 => state <= s1; outp <= ’1’;

end case;
end if;

end if;
end process;

end behavioral;

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
280 www.xilinx.com UG687 (v 14.5) March 20, 2013

Send Feedback



Chapter 7: HDL Coding Techniques

FSM with Three Always Blocks Verilog Coding Example
//
// State Machine with three always blocks.
//
// Download: http://www.xilinx.com/txpatches/pub/documentation/misc/xstug_examples.zip
// File: HDL_Coding_Techniques/state_machines/state_machines_3.v
//
module v_fsm_3 (clk, reset, x1, outp);

input clk, reset, x1;
output outp;
reg outp;
reg [1:0] state;
reg [1:0] next_state;

parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

initial begin
state = 2’b00;

end

always @(posedge clk or posedge reset)
begin

if (reset) state <= s1;
else state <= next_state;

end

always @(state or x1)
begin

case (state)
s1: if (x1==1’b1)

next_state = s2;
else

next_state = s3;
s2: next_state = s4;
s3: next_state = s4;
s4: next_state = s1;

endcase
end

always @(state)
begin

case (state)
s1: outp = 1’b1;
s2: outp = 1’b1;
s3: outp = 1’b0;
s4: outp = 1’b0;

endcase
end

endmodule

XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
UG687 (v 14.5) March 20, 2013 www.xilinx.com 281

Send Feedback


