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Hybrid Automata
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Timed Automaton Model of a Thermostat
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Possible Execution of the Timed Thermostat
Model
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Higher Order Dynamics: Bouncing Ball
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ẏ(t) = −gt

y(t) = y(0)+
t∫

0
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Higher Order Dynamics: Bouncing Ball
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At t1, y(t)1 = 0. The bump transition takes place with new speed
−aẏ(t1).

ẏ(t) =−aẏ(t1)−gt (t > t1)
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Sticky Masses Example
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Sticky Masses Example System Dynamics

• Let p1 and p2 be neutral places of the two springs.
• The forces due to the springs are zero.

• Suppose the spring force is proportional to the displacement.

• When apart, forces due to the springs:

F1 = k1(p1− y1(t))

F2 = k2(p2− y2(t))

• Under Newton’s 2nd Law (i.e., F = ma):

ÿ1(t) = k1(p1− y1(t))/m1

ÿ2(t) = k2(p2− y2(t))/m2
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Sticky Masses Example System Dynamics

• When stuck together, pulled in opposite directions by two springs:

F = F1 +F2

m = m1 +m2

y(t) = y1(t) = y2(t)

ÿ(t) =
k1p1 + k2p2− (k1 + k2)y(t)

m1 +m2
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Sticky Masses Example System Dynamics

• Guard on the apart to together transition is: y1(t) = y2(t).

• Initial velocity of combined mass, ẏ(t), set by conservation of
momentum:

ẏ(t)(m1 +m2) = ẏ1(t)m1 + ẏ2(t)m2

ẏ(t) =
ẏ1(t)m1 + ẏ2(t)m2

(m1 +m2)

• Guard on the together to apart transition is:

F2−F1 = (k1− k2)y(t)+ k2p2− k1p1 > s

where s represents the stickiness of the two masses.

• This transition occurs when the right-pulling force, k2(p2− y(t)),
exceeds the left-pulling force, k1(p1− y(t)), by the stickiness s.
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Hybrid System Model for Sticky Masses
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Control Systems

• A control system includes:
• The plant - the physical process that is to be controlled.
• The environment.
• The sensors.
• The controller.

• The controller has two levels:
• Supervisory control determines the mode transition structure.
• Low-level control determines the time-based inputs to the plant.

• Supervisory controller determines the strategy while the low-level
controller implements the strategy.

• Hybrid systems are ideal for modeling control systems.
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Automated Guided Vehicle (AGV) Example
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AGV Dynamics

• The speed is u(t) is restricted to:

0≤ u(t)≤ 10 mph

• The angular speed is ω(t) is restricted to:

−π≤ ω(t)≤ π radians/second

• Position is (x(t),y(t)) ∈ R2 and angle is θ(t) ∈ (−π,π].

• The motion of the AGV is defined by the differential equations:

ẋ(t) = u(t) cos θ(t)

ẏ(t) = u(t) sin θ(t)

θ̇(t) = ω(t)
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Determining the Error in Position
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Hybrid System Model for the AGV Example
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A Trajectory for the AGV Example
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AGV Example Summary

• Plant is the differential equations governing the AGV motion.

• Environment is the closed track.

• Sensor is e(t) which gives the AGV position relative to the track.

• Supervisory controller are the four modes and guards to switch
b/w them.

• Low-level controller is the specification of inputs to the plant u and
ω.
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Concluding Remarks

• Hybrid systems are a bridge between state-based and time-based
models which allow for the description of real-world systems.

• Discrete transitions are used to change the mode of operation.

• These transitions are taken when guards are satisfied that include
both inputs and predicates on continuous variables.

• The change in mode may result in a change in continuous
behavior.

• Analysis of hybrid systems is complicated by the fact that both
state-based and time-based analysis is required.
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