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Hybrid Automata: Syntax
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A hybrid automata is defined with (ignoring discrete variables)

• L: a finite set of locations.

• l0 ∈ L: the initial location.

• X : a finite set of real-valued variables.

• A: a finite set of actions.

• E : a finite set of edges connecting locations.

• Inv : location invariants.

• Flow : definition of continuous evolution on (X ∪ Ẋ ) in locations.

• Init: initial values of X ∪ Ẋ .

For each e ∈ E , e = (l1, α, Jump, l2) where

• α ∈ A is an action,

• Jump defines how X ∪ X ′ are updated when e happens.

X ′ represents updates to X after e is taken.

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 3 / 31



A Running Example

492 J.-F. Raskin

hybrid system that reaches a given set of states. As hybrid automata can be
very complex mathematical objects, restricted subclasses for which we have
automatic analysis methods have been introduced. In this introduction, we
focus on rectangular hybrid automata and show how they can be used to over-
approximate the behavior of more complex hybrid automata. We close the
chapter by referencing the literature to allow the reader into go deeper into
this flourishing research subject.

2 Hybrid Automata: A Model for Hybrid Systems

To illustrate the main notions about hybrid automata, we use a running ex-
ample throughout the chapter. The components of the running example are
depicted in Fig. 1. It shows a system composed of three devices: (i) a tank that
contains water and that can be heated using a gas burner, (ii) a gas burner
that can be turned on or turned off, and (iii) a thermometer that monitors the
temperature of the water inside the tank and periodically issues signals when
the temperature of the water in the tank is above or below certain thresholds.
Later, we will add to this system a controller that will observe the signals
issued by the thermometer and will issue orders to the gas burner in order to
maintain the temperature of the water within a given range.

Fig. 1. Our running example

We first describe in detail the behavior of the temperature of the water
in the tank. When the gas burner is OFF, the temperature of the water,
denoted by the variable x, decreases according to the following exponential
function: x(t) = Ie−Kt where I is the initial temperature of the water, K is a
constant that depends on the nature of the tank (how much it conducts heat
for example), and t denotes time. However, this law is only true when the
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• When the burner is Off, water
temp. x decreses def’ed by
x(t) = Ie−Kt when x(t) > 20.
• I : initial water temp..
• K : heat transfer constant of

tank.

• When x ≤ 20, x stays constant.

• When the burner is On, water
temp. x decreses def’ed by
x(t) = Ie−Kt + h(1− e−Kt) when
x(t) < 100.
• h: constant relative to the

power of the burner.

• When x = 100, x stays 100.
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A Possible Behavior of the Tank

An introduction to hybrid automta 3

temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automaton H is a tuple 〈Loc, Edge,
Σ, X, Init, Inv, Flow, Jump〉 where:
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Water Tank: Hybrid Automata

t1
ẋ = K (h − x)
20 ≤ x ≤ 100

t2
ẋ = 0

x = 100

t3
ẋ = −Kx

20 ≤ x ≤ 100

t4
ẋ = 0

x = 20

B , x = 100 ∧ x ′ = x

Off , x = x ′ = 0

C , x = 20 ∧ x ′ = x

On, x = x ′

Off , x ′ = x

On, x ′ = x
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Hybrid Automata: Semantics
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Transitions

Let η : X −→ R.

• A state of a hybrid automata is (l , η).

• The initial state is (l0, η0).

Discrete transition: (l1, η1)
e−→ (l2, η2)

• An edge e = (l1, α, Jump, l2) ∈ E is enabled/executable in a
state (l1, η1) if
• η1 |= Jump(X ), and
• there is a matching synchronization action to α.

• A new state (l2, η2) after executing e such that

η2 |= Jump(X ′).
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Transitions (Cont’d)

Continuous transition: (l , η1)
δ−→ (l , η2), δ ∈ R+

There is a differentiable function f : [0, δ] −→ Rm, with the first
derivative ḟ : [0, δ] −→ Rm, such that

• f (0) = η1,

• f (δ) = η2,

• For all t ∈ [0, δ], f (t) |= Inv(l) and ḟ (t) |= Flow(l).

Intuitively, a hybrid automata can stay in a location by letting time
pass by without violating the location invariant, and the valuation of
X during that period of time is constrained by the flow condition
labeled in that location.
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Execution Traces

• Execution step: −→=
e−→ ∪ δ−→

• Execution trace:

(l0, u0) −→ (l1, η1) −→ (l2, η2) . . .

• Reachability: (i , η) is reachable if there exists a trace

(l0, η0) −→ (l1, η1) . . . −→ (ln, ηn)

such that l = ln and u = ηn.
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t1
ẋ = K (h − x)
20 ≤ x ≤ 100

t2
ẋ = 0

x = 100

t3
ẋ = −Kx

20 ≤ x ≤ 100

t4
ẋ = 0

x = 20

B , x = 100 ∧ x ′ = x

Off , x = x ′

C , x = 20 ∧ x ′ = x

On, x = x ′

Off , x ′ = x

On, x ′ = x

(t4, x = 20)
On−→ (t1, x = 20)

10−→ (t1, x = 88.59)
2.74−−→ (t1, x = 100)

B−→ (t2, x = 100)
5−→ (t2, x = 100)

Off−−→ (t3, x = 100)
8−→ (t3, x = 54.88), . . .
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Composing Hybrid Automata
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Parallel Composition of Hyrbid Automata

Two HAs H1 = (L1, l10,X1,A1,E1, Inv1,Flow1, Init1) and
H2 = (L2, l20,X2,A2,E2, Inv2,Flow2, Init2) such that L1 ∩ L2 = ∅, their
parallel composition, H1‖H2 is a HA (L, l0,C ,A,E , Inv) where

• L = L1 × L2,

• l0 = (l10, l20);

• X = X1 ∪ X2,

• A = A1 ∪ A2,

• E = {. . .}, defined in the next slide,

• Inv(l1, l2) = Inv1(l1) ∧ Inv2(l2) for all (l1, l2) ∈ L,

• Flow(l1, l2) = Flow1(l1) ∧ Flow2(l2) for all (l1, l2) ∈ L,

• Init = Init1 ∧ Init2.
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Parallel Composition of Timed Automata

E = {(l1, l2), α, Jump, (l ′1, l
′
2)} includes edges defined as follows.

(l1, α, Jump1, l
′
1) ∈ E1 (l2, α, Jump2, l

′
2) ∈ E2

Sync
((l1, l2), α, Jump1 ∧ Jump2, (l ′1, l

′
2)) ∈ E

(l1, α, Jump1, l
′
1) ∈ E1 α /∈ A2

Async
((l1, l2), α, Jump1 ∧

∧
x∈X2−X1

x ′ = x , (l ′1, l2)) ∈ E

(l2, α, cc2, reset2, l
′
2) ∈ E2 α /∈ A1

Async
((l1, l2), α, Jump2 ∧

∧
x∈X1−X2

x ′ = x , (l1, l
′
2)) ∈ E
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Modeling Thermometer

t0
ż = 1
z ≤ 1

10

z = 0

UP95, z = 1
10
∧ x ≥ 95 ∧ z ′ = 0

DW 93, z = 1
10
∧ x ≥ 93 ∧ z ′ = 0

ε, z = 1
10
∧ 93 < x < 95 ∧ z ′ = 0
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Modeling Burner

b0

ẏ = 0
b1

ẏ = 1
y ≤ 1

10

b2

ẏ = 0
b3

ẏ = 1
y ≤ 1

10

y = 0 TurnOn, y ′ = 0

On, y ′ = 0

TurnOff , y ′ = 0

Off , y ′ = 0
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Product of Tank and Thermometer

500 J.-F. Raskin

by the two automata have as enabling condition the conjunction of the
enabling conditions of each discrete change. Their effect is the conjunction
of the effects of each discrete change.

In our example, we obtain the complete system by composing the three
automata. It is easy to show that the product operation that we have defined
is commutative and associative, so we can write Sys = Tank⊗Burner⊗Thermo.
Fig. 5 shows the hybrid automaton obtained by composing the automaton for
the tank and the automaton for the thermometer. We have omitted transitions
that are incompatible with the invariant of their starting location. That is,
edges e = (l,σ, l′) such that [[Jump(e) ∧ Inv(l)]]= ∅ are not depicted.

Fig. 5. Product of tank and thermometer

3 Properties of Hybrid Systems

Properties assign values to trajectories of hybrid systems. In this introduction,
we restrict ourselves to properties that classify trajectories as good or bad
according to whether or not they stay in a given set of (good) states. Those
properties are called safety properties [1], and they are the most important
class of properties when considering safety critical systems.
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Hybrid Automata: Properties
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Safety Property

• Nothing bad happens!

• Liveness is difficult to check for an undecidable problem.

• Water thank: design a controller to satisfy

R1 Temp. x of tank is always less than 100◦.
R2 After 15 seconds of operation, the temp. x of tank stays

between 91◦ and 97◦.
R3 When 91◦ ≤ x ≤ 97◦, the burner is never On continuously for

more than 2 seconds.
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A Proposed Controller

c1
ṡ = 0

c2
ṡ = 1
s ≤ 0

c3
ṡ = 0

c4
ṡ = 1
s ≤ 0

s = 0

UP95

DW 93, s ′ = 0

TurnOn

UP95, s ′ = 0

DW 93

TurnOff
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Monitor for Safety Property

R1: Temp. x of tank is always less than 100◦.

An introduction to hybrid automata 503

(a) Monitor for property (R1) (b) Monitor for property (R2)

(c) Monitor for property (R3)

Fig. 7. Monitors for the safety properties (R1), (R2), and (R3)

w2 which is a Bad location. Thus to verify property (R1), we have to estab-
lish that no state in which the control of Moni1 is in location w2 is reachable
in [[Tank ⊗ Burner ⊗ Thermo ⊗ Controller ⊗ Moni1]]. In that case, we know that
the controller ensures requirement (R1). The automaton Moni2 initially main-
tains a variable t that counts the time elapsed since the initialization of the
system. When this variable reaches value 15 (the system was started 15 sec-
onds ago), the control has to leave location w1. If the value of variable x (the
temperature of the water inside the tank) at that time is between 91 and 97,
the control moves to location w2 and the control can stay there only if the
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Monitor for Safety Property

R2: After 15 seconds of operation, the temp. x of tank stays
between 91◦ and 97◦.
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(a) Monitor for property (R1) (b) Monitor for property (R2)

(c) Monitor for property (R3)

Fig. 7. Monitors for the safety properties (R1), (R2), and (R3)

w2 which is a Bad location. Thus to verify property (R1), we have to estab-
lish that no state in which the control of Moni1 is in location w2 is reachable
in [[Tank ⊗ Burner ⊗ Thermo ⊗ Controller ⊗ Moni1]]. In that case, we know that
the controller ensures requirement (R1). The automaton Moni2 initially main-
tains a variable t that counts the time elapsed since the initialization of the
system. When this variable reaches value 15 (the system was started 15 sec-
onds ago), the control has to leave location w1. If the value of variable x (the
temperature of the water inside the tank) at that time is between 91 and 97,
the control moves to location w2 and the control can stay there only if the
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Monitor for Safety Property

R3: When 91◦ ≤ x ≤ 97◦, the burner is never On continuously for
more than 2 seconds.
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(a) Monitor for property (R1) (b) Monitor for property (R2)

(c) Monitor for property (R3)

Fig. 7. Monitors for the safety properties (R1), (R2), and (R3)
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the controller ensures requirement (R1). The automaton Moni2 initially main-
tains a variable t that counts the time elapsed since the initialization of the
system. When this variable reaches value 15 (the system was started 15 sec-
onds ago), the control has to leave location w1. If the value of variable x (the
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Rectangular Hybrid Automata
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Rectangular Automata: Overview

• Analyzing general hybrid automata is very difficult.
• It is also undecidable!

• Rectangular automata is a subclass of hybrid automata.
• More expressive than timed automata,
• Verification is decidable under additional conditions.

• Safety properties are usually the focus for analyzing hybrid
automata.
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Rectangular Automata: Definition

• Q is the set of rational numbers.

• Let I = {(a, b), [a, b), (a, b], [a, b]} denote an intervals where
• a ∈ Q ∪ {−∞}, b ∈ Q ∪ {∞}, and a ≤ b.

Rectangular predicates
Predicates over variables X are rectangular if they are defined by the
following rules

φ1, φ2 := false | true | x ∈ I | φ1 ∧ φ2

Let Rect(X ) be the set of all rectangular predicates defined over X .

Note that x ∈ (−1, 3] is the same as −1 < x ≤ 3,
Example: −1 < x ≤ 3 ∧ 0 ≤ y .
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Rectangular Automata: Definition

Rectangular update predicates
Rectangular update predicates, denoted by updateRect(X ), is the set
of all rectangular predicates over X ∪ X ′ defined below.

φ1, φ2 := false | true | x ∈ I | x ′ ∈ I | x ′ = x | φ1 ∧ φ2

Rectangular Automata
A rectangular is a hybrid automata where

• Init ∈ Rect(X ),

• Inv(l) ∈ Rect(X ) for every l ∈ L,

• Flow(l) ∈ Rect(Ẋ ) for every l ∈ L,

• Jump(e) ∈ updateRect(X ) for every e ∈ E .
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Rectangular Automata for the Water Tank

Original hybrid automata for the water tank.

t1
ẋ = K (h − x)
20 ≤ x ≤ 100

t2
ẋ = 0

x = 100

t3
ẋ = −Kx

20 ≤ x ≤ 100

t4
ẋ = 0

x = 20

B , x = 100 ∧ x ′ = x

Off , x = x ′

C , x = 20 ∧ x ′ = x

On, x = x ′

Off , x ′ = x

On, x ′ = x

Rectangular automata is over-approximation of the original HA. If a
property is verified in the rectangular automata, it is also true in the
original HA.
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Rectangular Automata for the Water Tank

Converted rectangular automata.

t1
ẋ ∈ [3, 10]

20 ≤ x ≤ 100

t2
ẋ = 0

x = 100

t3
ẋ ∈ [−8,−1]
20 ≤ x ≤ 100

t4
ẋ = 0

x = 20

B , x = 100 ∧ x ′ = x

Off , x = x ′

C , x = 20 ∧ x ′ = x

On, x = x ′

Off , x ′ = x

On, x ′ = x

Rectangular automata is over-approximation of the original HA. If a
property is verified in the rectangular automata, it is also true in the
original HA.
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Rectangular Automata: RefinementAn introduction to hybrid automta 21

Fig. 10. Refinement by location splitting

Fig. 11. Approximation of the dynamics by rectangles with rectangular regions
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Train-Gate Control in Hybrid Automata
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