CIS 4930/6930: Principles of Cyber-Physical Systems Chapter 4: Hybrid Systems - Hybrid Automata

Hao Zheng

Department of Computer Science and Engineering University of South Florida

Ref.: An Introduction to Hybrid Automata http://link.springer.com/chapter/10.1007%2F0-8176-4404-0_21 Skip sec. 3.2, 4.2, skim sec. 5.

Hybrid Automata: Syntax

A hybrid automata is defined with (ignoring discrete variables)

- L: a finite set of locations.
- $I_0 \in L$: the initial location.
- X: a finite set of real-valued variables.
- A: a finite set of actions.
- E: a finite set of edges connecting locations.
- Inv: location invariants.
- Flow: definition of continuous evolution on $(X \cup \dot{X})$ in locations.
- *Init*: initial values of $X \cup \dot{X}$.

For each $e \in E$, $e = (I_1, \alpha, Jump, I_2)$ where

- $\alpha \in A$ is an action,
- Jump defines how $X \cup X'$ are updated when e happens.

X' represents updates to X after e is taken.

- When the burner is Off, water temp. x decreses def'ed by x(t) = le^{-Kt} when x(t) > 20.
 - *I*: initial water temp..
 - *K*: heat transfer constant of tank.

- When the burner is Off, water temp. x decreses def'ed by x(t) = le^{-Kt} when x(t) > 20.
 - *I*: initial water temp..
 - *K*: heat transfer constant of tank.
- When $x \leq 20$, x stays constant.

- When the burner is Off, water temp. x decreses def'ed by x(t) = le^{-Kt} when x(t) > 20.
 - *I*: initial water temp..
 - *K*: heat transfer constant of tank.
- When $x \leq 20$, x stays constant.
- When the burner is **On**, water temp. x decreses def'ed by $x(t) = le^{-\kappa t} + h(1 - e^{-\kappa t})$ when x(t) < 100.
 - *h*: constant relative to the power of the burner.

- When the burner is Off, water temp. x decreses def'ed by x(t) = le^{-Kt} when x(t) > 20.
 - I: initial water temp..
 - *K*: heat transfer constant of tank.
- When $x \leq 20$, x stays constant.
- When the burner is **On**, water temp. x decreses def'ed by $x(t) = le^{-\kappa t} + h(1 - e^{-\kappa t})$ when x(t) < 100.
 - *h*: constant relative to the power of the burner.
- When *x* = 100, *x* stays 100.

A Possible Behavior of the Tank

Water Tank: Hybrid Automata

Hybrid Automata: Semantics

Transitions

Let $\eta: X \to \mathbb{R}$.

- A state of a hybrid automata is (I, η) .
- The initial state is (I_0, η_0) .

Discrete transition: $(I_1, \eta_1) \xrightarrow{e} (I_2, \eta_2)$

- An edge e = (l₁, α, Jump, l₂) ∈ E is enabled/executable in a state (l₁, η₁) if
 - $\eta_1 \models Jump(X)$, and
 - there is a matching synchronization action to α .
- A new state (I_2, η_2) after executing *e* such that

$$\eta_2 \models Jump(X').$$

Continuous transition: $(I, \eta_1) \xrightarrow{\delta} (I, \eta_2), \ \delta \in \mathbb{R}^+$

There is a differentiable function $f : [0, \delta] \to \mathbb{R}^m$, with the first derivative $f : [0, \delta] \to \mathbb{R}^m$, such that

- $f(0) = \eta_1$,
- $f(\delta) = \eta_2$,
- For all $t \in [0, \delta]$, $f(t) \models Inv(l)$ and $\dot{f}(t) \models Flow(l)$.

Intuitively, a hybrid automata can stay in a location by letting time pass by without violating the location invariant, and the valuation of X during that period of time is constrained by the flow condition labeled in that location.

- Execution step: $\rightarrow = \stackrel{e}{\rightarrow} \cup \stackrel{\delta}{\rightarrow}$
- Execution trace:

$$(I_0, u_0) \rightarrow (I_1, \eta_1) \rightarrow (I_2, \eta_2) \dots$$

• Reachability: (i, η) is reachable if there exists a trace

$$(I_0,\eta_0) \rightarrow (I_1,\eta_1) \ldots \rightarrow (I_n,\eta_n)$$

such that $I = I_n$ and $u = \eta_n$.

$$(t_4, x = 20) \xrightarrow{On} (t_1, x = 20)$$

$$(t_4, x = 20) \xrightarrow{On} (t_1, x = 20) \xrightarrow{10} (t_1, x = 88.59)$$

 $(t_4, x = 20) \xrightarrow{On} (t_1, x = 20) \xrightarrow{10} (t_1, x = 88.59) \xrightarrow{2.74} (t_1, x = 100)$

$$(t_4, x = 20) \xrightarrow{On} (t_1, x = 20) \xrightarrow{10} (t_1, x = 88.59) \xrightarrow{2.74} (t_1, x = 100)$$

 $\xrightarrow{B} (t_2, x = 100)$

$$(t_4, x = 20) \xrightarrow{On} (t_1, x = 20) \xrightarrow{10} (t_1, x = 88.59) \xrightarrow{2.74} (t_1, x = 100)$$

 $\xrightarrow{B} (t_2, x = 100) \xrightarrow{5} (t_2, x = 100)$

$$(t_4, x = 20) \xrightarrow{On} (t_1, x = 20) \xrightarrow{10} (t_1, x = 88.59) \xrightarrow{2.74} (t_1, x = 100)$$

 $\xrightarrow{B} (t_2, x = 100) \xrightarrow{5} (t_2, x = 100) \xrightarrow{Off} (t_3, x = 100)$

$$\begin{array}{l} (t_4, x = 20) \xrightarrow{On} (t_1, x = 20) \xrightarrow{10} (t_1, x = 88.59) \xrightarrow{2.74} (t_1, x = 100) \\ \xrightarrow{B} (t_2, x = 100) \xrightarrow{5} (t_2, x = 100) \xrightarrow{Off} (t_3, x = 100) \\ \xrightarrow{8} (t_3, x = 54.88), \dots \end{array}$$

Composing Hybrid Automata

Parallel Composition of Hyrbid Automata

Two HAs $H_1 = (L_1, I_{10}, X_1, A_1, E_1, Inv_1, Flow_1, Init_1)$ and $H_2 = (L_2, I_{20}, X_2, A_2, E_2, Inv_2, Flow_2, Init_2)$ such that $L_1 \cap L_2 = \emptyset$, their parallel composition, $H_1 || H_2$ is a HA (L, I_0, C, A, E, Inv) where

- $L = L_1 \times L_2$,
- $I_0 = (I_{10}, I_{20});$
- $X=X_1\cup X_2$,
- $A=A_1\cup A_2$,
- $E = {\ldots}$, defined in the next slide,
- $\mathit{Inv}(\mathit{l}_1,\mathit{l}_2) = \mathit{Inv}_1(\mathit{l}_1) \land \mathit{Inv}_2(\mathit{l}_2)$ for all $(\mathit{l}_1,\mathit{l}_2) \in \mathit{L}$,
- $Flow(l_1, l_2) = Flow_1(l_1) \land Flow_2(l_2)$ for all $(l_1, l_2) \in L$,
- $Init = Init_1 \wedge Init_2$.

Parallel Composition of Timed Automata

$E = \{(l_1, l_2), \alpha, Jump, (l'_1, l'_2)\} \text{ includes edges defined as follows.}$ $(l_1, \alpha, Jump_1, l'_1) \in E_1 \quad (l_2, \alpha, Jump_2, l'_2) \in E_2$

 $((l_1, l_2), \alpha, \textit{Jump}_1 \land \textit{Jump}_2, (l_1', l_2')) \in E$

$$(l_1, \alpha, Jump_1, l'_1) \in E_1 \quad \alpha \notin A_2$$

$$(l_1, l_2), \alpha, Jump_1 \land \bigwedge_{x \in X_2 - X_1} x' = x, (l'_1, l_2)) \in E$$
Async

$$(I_2, \alpha, cc_2, reset_2, I'_2) \in E_2 \quad \alpha \notin A_1$$

$$((l_1, l_2), \alpha, Jump_2 \land \bigwedge_{x \in X_1 - X_2} x' = x, (l_1, l_2')) \in E$$

Async

Modeling Thermometer

$$UP95, z = \frac{1}{10} \land x \ge 95 \land z' = 0$$

$$z = 0$$

$$\dot{z} = 1$$

$$z \le \frac{1}{10}$$

$$\epsilon, z = \frac{1}{10} \land 93 < x < 95 \land z' = 0$$

$$DW93, z = \frac{1}{10} \land x \ge 93 \land z' = 0$$

Modeling Burner

Product of Tank and Thermometer

Hybrid Automata: Properties

- Nothing bad happens!
- Liveness is difficult to check for an undecidable problem.
- Water thank: design a controller to satisfy
 - **R1** Temp. x of tank is always less than 100° .
 - **R2** After 15 seconds of operation, the temp. x of tank stays between 91° and 97°.
 - **R3** When $91^{\circ} \le x \le 97^{\circ}$, the burner is never **On** continuously for more than 2 seconds.

A Proposed Controller

R1: Temp. x of tank is always less than 100° .

Monitor for Safety Property

R2: After 15 seconds of operation, the temp. x of tank stays between 91° and 97°.

Monitor for Safety Property

R3: When $91^{\circ} \le x \le 97^{\circ}$, the burner is never **On** continuously for more than 2 seconds.

H. Zheng (CSE USF)

CIS 4930/6930: Principles of CPS

Rectangular Hybrid Automata

- Analyzing general hybrid automata is very difficult.
 - It is also undecidable!
- Rectangular automata is a subclass of hybrid automata.
 - More expressive than timed automata,
 - Verification is decidable under additional conditions.
- Safety properties are usually the focus for analyzing hybrid automata.

Rectangular Automata: Definition

- $\ensuremath{\mathbb{Q}}$ is the set of rational numbers.
- Let $I = \{(a, b), [a, b), (a, b], [a, b]\}$ denote an intervals where
 - $a \in \mathbb{Q} \cup \{-\infty\}$, $b \in \mathbb{Q} \cup \{\infty\}$, and $a \leq b$.

Rectangular predicates

Predicates over variables X are rectangular if they are defined by the following rules

$$\phi_1, \phi_2 :=$$
false | true | $x \in I | \phi_1 \land \phi_2$

Let Rect(X) be the set of all rectangular predicates defined over X.

Note that $x \in (-1, 3]$ is the same as $-1 < x \le 3$, Example: $-1 < x \le 3 \land 0 \le y$.

Rectangular Automata: Definition

Rectangular update predicates

Rectangular update predicates, denoted by updateRect(X), is the set of all rectangular predicates over $X \cup X'$ defined below.

 $\phi_1, \phi_2 := \mathsf{false} \mid \mathsf{true} \mid x \in I \mid x' \in I \mid x' = x \mid \phi_1 \land \phi_2$

Rectangular Automata

A rectangular is a hybrid automata where

- Init $\in Rect(X)$,
- $Inv(I) \in Rect(X)$ for every $I \in L$,
- $Flow(I) \in Rect(\dot{X})$ for every $I \in L$,
- $Jump(e) \in updateRect(X)$ for every $e \in E$.

Rectangular Automata for the Water Tank

Original hybrid automata for the water tank.

Rectangular Automata for the Water Tank

Rectangular automata is over-approximation of the original HA. If a property is verified in the rectangular automata, it is also true in the original HA.

Rectangular Automata: Refinement

Train-Gate Control in Hybrid Automata

Figure 2: Train automaton

Figure 3: Controller automaton

