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Modeling Techniques

• Models are abstractions of system dynamics (i.e., how things
change over time):

• Examples:
• Continuous dynamics - ordinary differential equations (ODEs)
• Discrete dynamics - finite-state machines (FSMs)
• Hybrid systems - a variety of hybrid system models
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Modeling Continuous Dynamics

• Classical mechanics is the study of mechanical parts that move.

• Motion of mechanical parts can often be modeled using ordinary
differential equations (ODEs).

• ODEs can also be applied to numerous other domains including
circuits, chemical processes, and biological processes.

• ODEs used in tools such as LabVIEW (from National Instruments)
and Simulink (from The MathWorks, Inc.).

• ODEs only work for “smooth” motion where linearity, time
invariance, and continuity properties hold.

• Non-smooth motion, such as collisions, require hybrid (mixture of
continuous and discrete) models (see next lecture).

• Feedback control can stabilize unstable systems.
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2.1 Model of Helicopter Dynamics

z y

x

Roll

Yaw
Pitch

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 4 / 29



Position

• Position is represented by six functions:

x : R→ R
y : R→ R
z : R→ R

roll θx : R→ R
yaw θy : R→ R
pitch θz : R→ R

where the domain represents time and the co-domain (range)
represents position or orientation along the axis.

• Collecting into two vectors:

x : R→ R3

θ : R→ R3

where x represents position and θ represents orientation.
H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 5 / 29



Newton’s Second Law

F(t) = Mẍ(t)

where F is the force vector, M is the mass, and ẍ is second derivative of
x (i.e., the acceleration).
• Velocity can be determined as follows:

∀t > 0, ẋ(t) = ẋ(0) +
∫ t

0
ẍ(τ)dτ

= ẋ(0) +
1
M

∫ t

0
F(τ)dτ

• Position can be determined as follows:

∀t > 0, x(t) = x(0) +
∫ t

0
ẋ(τ)dτ

= x(0) + t ẋ(0) +
1
M

∫ t

0

∫
τ

0
F(α)dαdτ
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Rotational Version of Newton’s Second Law

• The rotational version of force is torque:

T(t) =
d
dt

(I(t)θ̇(t)) Tx (t)
Ty (t)
Tz(t)

 =
d
dt

 Ixx (t) Ixy (t) Ixz(t)
Iyx (t) Iyy (t) Iyz(t)
Izx (t) Izy (t) Izz(t)

 θ̇x (t)
θ̇y (t)
θ̇z(t)


where T is the torque vector and I(t) is the moment of inertia
tensor that represents reluctance of an object to spin.

• When I(t) is a constant I, this reduces to:

T(t) = Iθ̈(t)
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Rotational Version of Newton’s Second Law
(cont)

• Rotational acceleration:

θ̈(t) =
T(t)

I

• Rotational velocity:

θ̇(t) = θ̇(0) +
1
I

∫ t

0
T(τ)dτ

• Orientation:

θ(t) = θ(0) +
∫ t

0
θ̇(τ)dτ

= θ(0) + t θ̇(0) +
1
I

∫ t

0

∫
τ

0
T(α)dαdτ
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Feedback Control Problem

• A helicopter without a tail rotor will spin uncontrollably due to the
torque induced by friction in the rotor shaft.

• Control system problem: apply torque using the tail rotor to
counter the torque of the main rotor.
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Model-Order Reduction: Simplified Helicopter
Model

M
body

tail

main rotor shaft

θ̈y (t) = Ty (t)/Iyy

θ̇y (t) = θy (0) +
1

Iyy

∫ t

0
Ty (τ)dτ
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2.2 Actor Model of Systems

• A system is a function that relates an input x to an output y :

x : R→ R, y : R→ R

• The domain and range of the system function are sets of signals,
which are functions:

S : X → Y

where X = Y = (R→ R).
• Parameters may affect the definition of the function S.
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Actor Model of the Helicopter

• Input is the net torque of the tail rotor.

• Output is the angular velocity around the y axis.

• Parameters are Iyy and θ̇y (0).

• The system function is:

θ̇y (t) = θ̇y (0) +
1

Iyy

∫ t

0
Ty (τ)dτ
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Composition of Actor Models

∀t ∈ R, y(t) = ax(t)

y = ax

a = 1/Iyy

∀t ∈ R, y ′(t) = i +
∫ t

0
x ′(τ)dτ

i = θ̇y (0)
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Actor Models with Multiple Inputs

S : (R→ R)2→ (R→ R)

∀t ∈ R, y(t) = x1(t) + x2(t) y(t) = x1(t)− x2(t)
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2.3 Properties of Systems

• Causal systems

• Memoryless systems

• Linearity and time invariance

• Stability
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Causal Systems

• A system is causal if its output depends only on current and past
inputs.

• Formally, a system is causal if for all x1,x2 ∈ X and τ ∈ R:

x1|t≤τ = x2|t≤τ ⇒ S(x1)|t≤τ = S(x2)|t≤τ

where x |t≤τ is the restriction in time to current and past inputs.
• A system is causal if for two inputs x1 and x2 that are identical up

to (and including) time τ, the outputs are identical up to (and
including) time τ.

• A system is strictly causal if for all x1,x2 ∈ X and τ ∈ R:

x1|t<τ = x2|t<τ ⇒ S(x1)|t≤τ = S(x2)|t≤τ

• y(t) = x(t−1) is strictly causal, y(t) = cx(t) is causal.
• Strictly causal actors are useful for constructing feedback systems.
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Causal Systems

4/9

Causality: A causal (or non-anticipatory) system’s output at a time t1 does not 
depend on values of the input x(t) for t > t1

The “future input” cannot impact the “now output”

Most systems in nature are causal

� A Causal system (with zero initial conditions) cannot have a 
non-zero output until a non-zero input is applied. 

But… we need to understand non-causal systems because theory shows 
that the “best” systems are non-causal!  So we need to find causal systems 
that are as close to the best non-causal systems!!!
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Memoryless Systems

• A system has memory if the output depends not only on the
current inputs, but also on past inputs (or future inputs, if not
causal).

• In a memoryless system, the output at time t depends only on the
input at time t .

• Formally, a system is memoryless if there exists a function
f : A→ B such that for all x ∈ X and for all t ∈ R:

(S(X))(t) = f (x(t))

• The Integrator is not memoryless, but the adder is.

• A strictly causal, memoryless system has a constant output for all
inputs.
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Linearity and Time Invariance

• A system is linear if it satisfies the superposition property:

∀x1,x2 ∈ X and ∀a,b ∈ R,S(ax1 + bx2) = aS(x1) + bS(x2)

• The helicopter example is linear if and only if θ̇y (0) = 0.

• Integrator is linear when i = 0, and scale factor/adder are always
linear.

5/9

Linearity: A system is linear if superposition holds:

Linear System
x1(t) y1(t)

Linear System
x2(t) y2(t)

Linear System
x(t) = a1 x1(t)+ a2 x2(t) y(t) = a1 y1(t)+ a2 y2(t)

Non-Linear
x1(t) y1(t)

Non-Linear
x2(t) y2(t)

Non-Linear
x(t) = a1 x1(t)+ a2 x2(t) y(t) z a1 y1(t)+ a2 y2(t)
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Linearity and Time Invariance

• A system is time invariant if:

∀x ∈ X and τ ∈ R,S(Dτ(x)) = Dτ(S(x))

where Dτ : X → Y is a delay such that (Dτ(x))(t) = x(t− τ).

• Helicopter example is not time invariant unless no initial angular
rotation, and the integral starts at −∞.

7/9

Time-Invariance
Physical View: The system itself does not change with time

Ex. A circuit with fixed R,L,C is time invariant.
Actually, R,L,C values change slightly over time due to temperature & aging effects. 

A circuit with, say, a variable R is time variant 
(assuming that someone or something is changing the R value) 

system
x(t) y(t)

x(t)
t

y(t)
t

y(t-t0)x(t-t0)

t0

t
x(t-t0)

t0

t
y(t-t0)

Technical View: A system is time invariant (TI) if:
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Stability

• A system is bounded-input bounded-output (BIBO) stable if the
output signal is bounded for all input signals that are bounded.

• Consider a continuous-time system with input w and output v .

• The input is bounded if there is a real number A < ∞ such that
|w(t)| ≤ A for all t ∈ R.

• The output is bounded if there is a real number B < ∞ such that
|v(t)| ≤ B for all t ∈ R.

• The system is stable if for any input bounded by some A, there is
some bound B on the output.
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Open-Loop Helicopter

• Helicopter example is not stable.
• Consider input Ty = u where u is a unit step input:

∀t ∈ R, u(t) =

{
0, t < 0
1, t ≥ 0

• The system function is:

θ̇y (t) = θ̇y (0) +
1

Iyy

∫ t

0
Ty (τ)dτ
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2.4 Feedback Control

• Feedback control is used to achieve stability.

• These systems measure the error (difference between actual and
desired behavior) and use this information to correct the behavior.

e
K

ψ
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Mathematical Analysis

θ̇y (t) = θ̇y (0) +
1

Iyy

∫ t

0
Ty (τ)dτ

= θ̇y (0) +
K
Iyy

∫ t

0
(Ψ(τ)− θ̇y (τ))dτ

Not easy to solve. Assume Ψ = 0.

θ̇y (t) = θ̇y (0)− K
Iyy

∫ t

0
θ̇y (τ)dτ

The solution:

θ̇y (t) = θ̇y (0)e−Kt/Iyy u(t)

θ̇y (t) approaches 0 when t becomes large (K is positive).
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Mathematical Analysis (cont)
Assume initially at rest with a non-zero desired angular velocity:

θ̇(0) = 0

Ψ(t) = au(t)

Substitute in and simplify as follows:

θ̇y (t) =
K
Iyy

∫ t

0
(Ψ(τ)− θ̇y (τ))dτ

=
K
Iyy

∫ t

0
adτ− K

Iyy

∫ t

0
θ̇y (τ)dτ

=
Kat
Iyy
− K

Iyy

∫ t

0
θ̇y (τ)dτ

After some magic:

θ̇y (t) = au(t)(1−e−Kt/Iyy )
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Helicopter Model with Separately Controlled
Torques

(c)

(a)

(b)
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Mathematical Analysis

Suppose the torque to the top rotor is:

Tt = bu(t)

Suppose the desired angular rotation is:

Ψ(t) = 0

Input to the original control system is:

x(t) = Ψ(t) + Tt(t)/K = (b/K )u(t)

The solution is:

θ̇y (t) = (b/K )u(t)(1−e−Kt/Iyy )
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Concluding Remarks

• This lecture introduces two modeling techniques that describe
physical dynamics: ODEs and actor models.

• This lecture emphasizes the relationship between these models.

• The fidelity of a model (how well it approximates the system) is a
strong factor in the success or failure of any engineering effort.
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Continuous vs Discrete Signals

• Continuous, also called continuous time, signals defined as

x : R→ R

• Discrete, also called discrete time, signals defined as

x : Z→ Z

Sampling

Continuous and discrete signals can be related through the sampling operation in the

sense that a discrete signal can be obtained by performing sampling on a continuous-

time signal with the uniform sampling period as presented in Figure 1.3. Since

is a given quantity, we will use in order to simplify notation.

[k]Δf(kT)=f

t

kT

f(t)

T 32

T 2 3

T T

T T

Figure 1.3: Sampling of a continuous signal

More about sampling will be said in Chapter 9.

The slides contain the copyrighted material from Linear Dynamic Systems and Signals, Prentice Hall, 2003. Prepared by Professor Zoran Gajic 1–4
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