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Functions of an Operating System (or
Microkernel)

• Memory management

• File system

• Networking

• Security

• Input and output (interrupt handling)

• Synchronization (semaphores and locks)

• Scheduling of threads or processes
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Functions of an Operating System (or
Microkernel)

• Memory management

• File system

• Networking

• Security

• Input and output (interrupt handling)

• Synchronization (semaphores and locks)

• Scheduling of threads or processes
• Creation and termination of threads
• Timing of thread activations
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Real-time Systems

• A real-time system includes timing constraints such as:
• Physical-time deadlines by which a task must be completed.
• Requirements that a task must occur no earlier than a particular

time.
• A task must occur a set time after another task.
• A task must occur periodically at some specified period.

• Tasks may be dependent on one another or simply share a
processor.

• All of these cases require a careful scheduling strategy. k6
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11.1 Basics of Scheduling:
11.1.1 Scheduling Decisions

• A scheduling decision has three parts:
• Assignment: which processor should execute the task.
• Ordering: in what order each processor should execute its tasks.
• Timing: the time at which each task executes.

• Decisions may be at design time or run time.
• A fully-static scheduler makes all decisions at design time (no

locks).
• A static order scheduler defers timing to run time (may block

on lock).
• A static assignment scheduler defers ordering and timing to

run time.
• A fully-dynamic scheduler makes all decisions at run time.
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11.1 Basics of Scheduling:
11.1.1 Scheduling Decisions

• A non-preemptive scheduler dispatches when current thread
completes.

• A preemptive scheduler may make a scheduling decision
during execution of a task
• Upon a timer interrupt at a jiffy interval.
• Upon an I/O interrupt.
• When it attempts to acquire an unavailable lock, and resumed

when another task releases the lock.
• When it releases a lock, if a higher priority thread requires the

lock.
• When the current thread makes any OS call.

• File system access
• Network access
• ...
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11.1.2 Task Models

• The set of assumptions is called the task model of the
scheduler.

• Assume a finite number of tasks that may or may not terminate.
• Real-time systems often assume that tasks terminate.

• Some schedulers can assume that
• All tasks are known before scheduling begins, or
• New tasks can arrive dynamically.

• Some schedulers support scenarios where each task τ ∈ T
executes repeatedly, possibly forever, and possibly periodically.
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11.1.2 Task Models

• Distinction between a task and its executions:
• When task τ ∈ T executes repeatedly, the task executions are
τ1, τ2, . . ..

• A sporadic task repeats with irregular timing, but has a lower
bound on the time between executions.

• If execution i must precede j , we write i < j (precedence
constraint).

• A task may require preconditions to be satisfied before it is
enabled.
• Availability of a lock may be a precondition for resumption of a

task.
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Deadlines and Priority

• Hard real-time scheduling has hard deadlines which are real
physical constraints that are an error when missed.

• Soft real-time scheduling has desired deadlines which are not
errors when missed.

• A priority-based scheduler assumes each task is assigned a
number (priority) and chooses the enabled task with the highest
priority.

• A fixed priority remains constant while a dynamic priority can
change.

• A non-preemptive priority-based scheduler only uses the
priorities to choose the next task, but never interrupts a task
that is executing.

• A preemptive priority-based scheduler can change to a
higher priority task at any time.
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11.1.3 Comparing Schedulers

• A schedule is feasible if it meets all deadlines (fi ≤ di).
• A scheduler that produces feasible schedules whenever possible

is optimal with respect to feasibility.

• Schedulers also judged based on utilization (the percentage of
time the processor is executing tasks).
• Optimal w.r.t feasibility schedulers deliver feasible schedules

whenever the utilization is ≤ 100%.

• Maximum lateness is another criterion:

Lmax = max
i∈T

(fi − di)

• Total completion time is also important:

M = max
i∈T

fi −min
i∈T

ri
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11.1.4 Implementation of a Scheduler

• Thread data structure:
• Copy of all state (machine registers).
• Address at which to resume executing the thread.
• Status of the thread (e.g. blocked on mutex).
• Priority, worst case execution time, and other info to assist the

scheduler.

• Operating System:
• Set up periodic timer interrupts.
• Create default thread data structures.
• Dispatch a thread.

• Timer interrupt service routine:
• Setup next timer interrupt.
• Dispatch a thread.
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Dispatching a Thread

1 Disable interrupts.

2 Save state (registers) including the return address on the stack.

3 Save the stack pointer into the current thread data structure.

4 Determine which thread should execute (scheduling).

5 If the same one, enable interrupts and return.

6 Restore the stack pointer for the new thread.

7 Copy thread state into machine registers.

8 Replace program counter on the stack for the new thread.

9 Enable interrupts.

10 Return.
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11.2 Rate Monotonic (RM) Scheduling

• Assume n tasks (i.e., T = {τ1, τ2, . . . τn}) invoked periodically
where each task must complete in each period, pi .

• Rate monotonic schedule gives higher priority to a task with
smaller period, and it is optimal with respect to feasibility.

• Note: important assumption is that context switch time is
negligible.

Liu and Leland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” J. ACM, 20(1), 1973.

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 13 / 44



Example: Two Periodic Tasks
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Example: Two Periodic Tasks

e
2 

p
2 

p
1 

+ 

τ1

τ2

How about a preemptive schedule with higher priority for red task?
Yes!

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 14 / 44



Worst Case Response Time
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Non-RM Schedule Feasible
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Condition for feasibility: e1 + e2 ≤ p1
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RM Schedule Also Feasible
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Comments

• Proof can be extended to an arbitrary number of tasks.

• Proof only gives optimality w.r.t. feasibility, not other optimality
criteria.

• Practical implementation:
• Timer interrupt at greatest common divisor of the periods.
• Multiple timers.

• Note RM schedulers do not always achieve 100 percent
utilization.
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11.3 Earliest Deadline First

Jackson’s earliest due date (EDD) Algorithm (1955)

• Given n independent one-time tasks with deadlines d1, . . . , dn,
schedule them to minimize the maximum lateness, defined as

Lmax = max
1≤i≤n

{fi − di}

where fi is the finishing time of task i . Note that this is negative
iff all deadlines are met.

• Earliest Due Date (EDD) algorithm: Execute them in order of
non-decreasing deadlines.
• Sort tasks such that d1 ≤ d2 ≤ . . . ≤ dn.
• Then, executes τ1, τ2, . . . , τn.
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11.3 Earliest Deadline First: EDD

• Note that this does not require preemption.

• Minimizes the maximum lateness as compared to all other
possible orderings.

• Does not support arrival of tasks, thus no periodic or repeating
tasks.
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11.3 Earliest Deadline First

• Horn’s earliest deadline first (EDF) Algorithm (1974) extends
EDD to allow tasks to arrive at any time.

Given a set of n independent tasks with arbitrary ar-
rival times, any algorithm that at any instant executes
the task with the earliest absolute deadline among all
arrived tasks is optimal w.r.t. minimizing the maxi-
mum lateness.

• EDF requires the scheduler to always execute the task with the
earliest deadline among all arrived tasks.

• EDF has a dynamic priority making it more difficult to
implement.
• A repeated task may be assigned with different priority at

different time.

• EDF can be applied to periodic tasks as well as aperiodic tasks
by making deadline be the end of the period.
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Comparison of EDF and RMS

• Favoring RMS:
• Scheduling decisions are simpler (fixed vs. dynamic priorities

required by EDF).
• EDF scheduler must maintain a list of ready tasks that is sorted

by priority.

• Favoring EDF:
• Since EDF is optimal w.r.t. maximum lateness, it is also optimal

w.r.t. feasibility while RMS is only optimal w.r.t. feasibility.
• EDF can achieve full utilization where RMS fails to do that.
• EDF results in fewer preemptions in practice, and hence less

overhead for context switching.
• Deadlines can be different from the period.
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11.3.1 EDF with Precedences
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Latest Deadline First (Lawler, 1973)

• Latest deadline first (LDF) builds a schedule backwards.

• Given a precedence graph, starting from the leaf nodes,
choose a node with no other dependent nodes and with the
latest deadline to be scheduled last, and work backwards.

• LDF is optimal in the sense that it minimizes the maximum
lateness.

• It does not require preemption while EDF does.

• However, it requires that all tasks be available and their
precedences known before any task is executed.
• Does not support arrival of tasks.
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LDF with Precedences
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EDF with Precedences (Chetto et al.,
1990)

• With a preemptive scheduler, EDF can be modified to account
for precedences and to allow tasks to arrive at arbitrary times.

• It adjusts the deadlines and arrival times according to the
precedences.

• For a task τi ∈ T , modify its deadline as follows:

d ′i = min(di , min
j∈D(i)

(d ′j − ej))

where D(i) ⊂ T are the tasks that immediately depend on i in
the precedence graph.

• EDF with precedences (EDF*) is optimal in the sense of
minimizing the maximum lateness.
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EDF with Precedences
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11.4 Scheduling and Mutual Exclusion

• Fixed priority scheduler always executes the enabled tasks with
highest priority.

• When threads access shared resources, they need to use mutexes
to ensure data integrity.

• Mutexes can also complicate scheduling.
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Mars Pathfinder

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 29 / 44



Priority Inversion: A Hazard with Mutexes
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Task 1 has highest priority, task 3 lowest. Task 3 acquires a lock on a
shared object, entering a critical section. It gets preempted by task 1,
which then tries to acquire the lock and blocks. Task 2 preempts task
3 at time 4, keeping the higher priority task 1 blocked for an
unbounded amount of time. In effect, the priorities of tasks 1 and 2
get inverted, since task 2 can keep task 1 waiting arbitrarily long.
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11.4.2 Priority Inheritance Protocol (PIP)

• When a task blocks attempting to acquire a lock, the task
holding the lock inherits the priority of the blocked task.
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11.4.3 Priority Ceiling Protocol

Priorities can be used to remove certain kinds of deadlocks.
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11.4.3 Priority Ceiling Protocol (PCP)

• Every lock or semaphore is assigned a priority ceiling equal to the
priority of the highest-priority task that can lock it.
• Can one automatically compute the priority ceiling?

• A task τ can acquire a lock only if the task’s priority is strictly
higher than the priority ceilings of all locks currently held by
other tasks.
• Intuition: task τ will not later try to acquire these locks held by

other tasks.
• Locks that are not held by any task don’t affect the task.

• This prevents deadlocks.

• There are extensions supporting dynamic priorities and dynamic
creations of locks.

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 33 / 44



11.4.3 Priority Ceiling Protocol (PCP)
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11.5 Multiprocessor Scheduling

• Scheduling a fixed finite set of tasks with precedence on a finite
number of processors with goal to minimize execution time is
NP-hard.

• Hu level scheduling algorithm assigns priority to task τ based
on the level.

• Level is the greatest sum of execution times of tasks on a path
in the precedence graph from τ to another task with no
dependents.

• It is a critical path method that is not optimal, but
approximates an optimal solution for most graphs.

• List scheduler assigns tasks to processors based on priorities.
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Precedence Example Revisited

0

1

d1= 2

d2= 5

d3= 4
d6= 6

d5= 5

d4= 3

642

3 2 4 5 6EDF

1 2 4 3 5 6LDF

1 2 4 3 5 6EDF*

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 36 / 44



A Two Processor Parallel Schedule
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11.5.1 Scheduling Anomalies and
Brittleness

• All thread scheduling algorithms are brittle (i.e., small changes
can have big, unexpected consequences).

• Let us consider a schedule for a multiprocessor (or multicore).

• Theorem (Richard Graham, 1976):

If a task set with fixed priorities, execution times, and
precedence constraints is scheduled according to prior-
ities on a fixed number of processors, then increasing
the number of processors, reducing execution times,
or weakening precedence constraints can increase the
schedule length.
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Richard’s Anomalies
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Richard’s Anomalies: Smaller Computation Time
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Richard’s Anomalies: More Processors
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Richard’s Anomalies: Less Precedences

Suppose precedences between task 4 and tasks 7 and 8 are removed.
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Richard’s Anomalies with Mutexes
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Concluding Remarks

• Scheduling is inherently difficult
• SW execution time hardly to predict accurately.
• The actual dynamic behavior can be quite different.

• Timing behavior under all known task scheduling strategies is
brittle.

• Small changes can have big (and unexpected) consequences.

• Unfortunately, since execution times are so hard to predict, such
brittleness can result in unexpected system failures.
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