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Functions of an Operating System (or

Microkernel)

e Memory management

File system

Networking

Security

Input and output (interrupt handling)

Synchronization (semaphores and locks)

Scheduling of threads or processes
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Functions of an Operating System (or

Microkernel)

Memory management

File system

Networking

Security

Input and output (interrupt handling)

Synchronization (semaphores and locks)

Scheduling of threads or processes

e Creation and termination of threads
e Timing of thread activations
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Real-time Systems

¢ A real-time system includes timing constraints such as:
Physical-time deadlines by which a task must be completed.
Requirements that a task must occur no earlier than a particular
time.

A task must occur a set time after another task.

e A task must occur periodically at some specified period.

e Tasks may be dependent on one another or simply share a
processor.

o All of these cases require a careful scheduling strategy. kg
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11.1 Basics of Scheduling:

11.1.1 Scheduling Decisions

e A scheduling decision has three parts:

e Assignment: which processor should execute the task.

e Ordering: in what order each processor should execute its tasks.

e Timing: the time at which each task executes.

e Decisions may be at design time or run time.

e A fully-static scheduler makes all decisions at design time (no
locks).

e A static order scheduler defers timing to run time (may block
on lock).

e A static assignment scheduler defers ordering and timing to
run time.

¢ A fully-dynamic scheduler makes all decisions at run time.
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11.1 Basics of Scheduling:

11.1.1 Scheduling Decisions

¢ A non-preemptive scheduler dispatches when current thread
completes.
e A preemptive scheduler may make a scheduling decision
during execution of a task
e Upon a timer interrupt at a jiffy interval.

Upon an 1/0O interrupt.

When it attempts to acquire an unavailable lock, and resumed
when another task releases the lock.

When it releases a lock, if a higher priority thread requires the

lock.
When the current thread makes any OS call.

e File system access
e Network access
o ..
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11.1.2 Task Models

The set of assumptions is called the task model of the
scheduler.

Assume a finite number of tasks that may or may not terminate.
e Real-time systems often assume that tasks terminate.
Some schedulers can assume that

e All tasks are known before scheduling begins, or
e New tasks can arrive dynamically.

Some schedulers support scenarios where each task 7 € T
executes repeatedly, possibly forever, and possibly periodically.
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11.1.2 Task Models

Distinction between a task and its executions:

e When task 7 € T executes repeatedly, the task executions are
TL, T2y e

A sporadic task repeats with irregular timing, but has a lower
bound on the time between executions.

If execution i must precede j, we write i < j (precedence
constraint).

A task may require preconditions to be satisfied before it is
enabled.

e Availability of a lock may be a precondition for resumption of a
task.
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Task Execution Times
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Deadlines and Priority

Hard real-time scheduling has hard deadlines which are real
physical constraints that are an error when missed.

Soft real-time scheduling has desired deadlines which are not
errors when missed.

A priority-based scheduler assumes each task is assigned a
number (priority) and chooses the enabled task with the highest
priority.

A fixed priority remains constant while a dynamic priority can
change.

A non-preemptive priority-based scheduler only uses the
priorities to choose the next task, but never interrupts a task
that is executing.

A preemptive priority-based scheduler can change to a
higher priority task at any time.

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 9 /44



11.1.3 Comparing Schedulers

e A schedule is feasible if it meets all deadlines (f; < d}).

e A scheduler that produces feasible schedules whenever possible
is optimal with respect to feasibility.

e Schedulers also judged based on utilization (the percentage of
time the processor is executing tasks).

e Optimal w.r.t feasibility schedulers deliver feasible schedules
whenever the utilization is < 100%.

e Maximum lateness is another criterion:

Lmax = max(f; — d;)

€T
¢ Total completion time is also important:

M = maxf;—minr;
ieT ieT
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11.1.4 Implementation of a Scheduler

e Thread data structure:
e Copy of all state (machine registers).
e Address at which to resume executing the thread.
e Status of the thread (e.g. blocked on mutex).
e Priority, worst case execution time, and other info to assist the
scheduler.
e Operating System:
e Set up periodic timer interrupts.
e Create default thread data structures.
e Dispatch a thread.
e Timer interrupt service routine:

e Setup next timer interrupt.
e Dispatch a thread.
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Dispatching a Thread

@ Disable interrupts.

@® Save state (registers) including the return address on the stack.
© Save the stack pointer into the current thread data structure.
0O Determine which thread should execute (scheduling).

@ If the same one, enable interrupts and return.

O Restore the stack pointer for the new thread.

@ Copy thread state into machine registers.

O Replace program counter on the stack for the new thread.

O Enable interrupts.

@ Return.
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11.2 Rate Monotonic (RM) Scheduling

e Assume n tasks (i.e., T = {71, 72,...7,}) invoked periodically
where each task must complete in each period, p;.

¢ Rate monotonic schedule gives higher priority to a task with
smaller period, and it is optimal with respect to feasibility.

e Note: important assumption is that context switch time is
negligible.

Liu and Leland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” J. ACM, 20(1), 1973.
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Example: Two Periodic Tasks
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Example: Two Periodic Tasks
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H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 14 / 44



Example: Two Periodic Tasks

Dy
€
<>
T IT1,1 I’Cl,z ITI,3 I’Cl,4 ITI,S I’Cl,s IT1,7
T 2,1 12,2
N ez 7

N

v

P>
Is a non-preemptive schedule feasible? No!
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How about a preemptive schedule with higher priority for red task?
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Example: Two Periodic Tasks
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Worst Case Response Time
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Non-RM Schedule Feasible
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Condition for feasibility: e; + e < py
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RM Schedule Also Feasible
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Comments

e Proof can be extended to an arbitrary number of tasks.
e Proof only gives optimality w.r.t. feasibility, not other optimality
criteria.
e Practical implementation:
e Timer interrupt at greatest common divisor of the periods.
e Multiple timers.
e Note RM schedulers do not always achieve 100 percent

utilization.
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11.3 Earliest Deadline First

Jackson's earliest due date (EDD) Algorithm (1955)

e Given n independent one-time tasks with deadlines di, ..., d,,
schedule them to minimize the maximum lateness, defined as

Lmax = lrgiagxn{fi - d/}

where f; is the finishing time of task /. Note that this is negative
iff all deadlines are met.

e Earliest Due Date (EDD) algorithm: Execute them in order of
non-decreasing deadlines.

e Sort tasks such that dy < db < ... < d,.
e Then, executes 71, 72,...,Th.
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11.3 Earliest Deadline First: EDD

e Note that this does not require preemption.

e Minimizes the maximum lateness as compared to all other
possible orderings.

e Does not support arrival of tasks, thus no periodic or repeating
tasks.
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11.3 Earliest Deadline First

e Horn's earliest deadline first (EDF) Algorithm (1974) extends
EDD to allow tasks to arrive at any time.

Given a set of n independent tasks with arbitrary ar-
rival times, any algorithm that at any instant executes
the task with the earliest absolute deadline among all
arrived tasks is optimal w.r.t. minimizing the maxi-
mum lateness.
e EDF requires the scheduler to always execute the task with the
earliest deadline among all arrived tasks.
e EDF has a dynamic priority making it more difficult to
implement.
e A repeated task may be assigned with different priority at
different time.
e EDF can be applied to periodic tasks as well as aperiodic tasks
by making deadline be the end of the period.
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Comparison of EDF and RMS

e Favoring RMS:

e Scheduling decisions are simpler (fixed vs. dynamic priorities
required by EDF).
e EDF scheduler must maintain a list of ready tasks that is sorted
by priority.
e Favoring EDF:

e Since EDF is optimal w.r.t. maximum lateness, it is also optimal
w.r.t. feasibility while RMS is only optimal w.r.t. feasibility.

e EDF can achieve full utilization where RMS fails to do that.

e EDF results in fewer preemptions in practice, and hence less
overhead for context switching.

e Deadlines can be different from the period.
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11.3.1 EDF with Precedences
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Latest Deadline First (Lawler, 1973)

e Latest deadline first (LDF) builds a schedule backwards.

¢ Given a precedence graph, starting from the leaf nodes,
choose a node with no other dependent nodes and with the
latest deadline to be scheduled last, and work backwards.

e LDF is optimal in the sense that it minimizes the maximum
lateness.

e |t does not require preemption while EDF does.

e However, it requires that all tasks be available and their
precedences known before any task is executed.

e Does not support arrival of tasks.
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LDF with Precedences
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EDF with Precedences (Chetto et al.,

1990)

e With a preemptive scheduler, EDF can be modified to account
for precedences and to allow tasks to arrive at arbitrary times.

e It adjusts the deadlines and arrival times according to the
precedences.

e For a task 7; € T, modify its deadline as follows:

di = min(d;, min (d] — ¢))

JjeD(i)

where D(i) C T are the tasks that immediately depend on i in
the precedence graph.

e EDF with precedences (EDF*) is optimal in the sense of
minimizing the maximum lateness.
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EDF with Precedences
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11.4 Scheduling and Mutual Exclusion

o Fixed priority scheduler always executes the enabled tasks with
highest priority.

e When threads access shared resources, they need to use mutexes
to ensure data integrity.

e Mutexes can also complicate scheduling.
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Mars Pathfinder
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Priority Inversion: A Hazard with Mutexes
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Task 1 has highest priority, task 3 lowest. Task 3 acquires a lock on a
shared object, entering a critical section. It gets preempted by task 1,
which then tries to acquire the lock and blocks. Task 2 preempts task
3 at time 4, keeping the higher priority task 1 blocked for an
unbounded amount of time. In effect, the priorities of tasks 1 and 2

get inverted, since task 2 can keep task 1 waiting arbitrarily long.
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11.4.2 Priority Inheritance Protocol (PIP)

e When a task blocks attempting to acquire a lock, the task
holding the lock inherits the priority of the blocked task.

task 1 blocked
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11.4.3 Priority Ceiling Protocol

Priorities can be used to remove certain kinds of deadlocks.

° acquire lock b
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11.4.3 Priority Ceiling Protocol (PCP)

e Every lock or semaphore is assigned a priority ceiling equal to the
priority of the highest-priority task that can lock it.

e Can one automatically compute the priority ceiling?

e A task 7 can acquire a lock only if the task’s priority is strictly
higher than the priority ceilings of all locks currently held by
other tasks.

e Intuition: task 7 will not later try to acquire these locks held by
other tasks.
e Locks that are not held by any task don't affect the task.
e This prevents deadlocks.

e There are extensions supporting dynamic priorities and dynamic
creations of locks.
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11.4.3 Priority Ceiling Protocol (PCP)
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11.5 Multiprocessor Scheduling

e Scheduling a fixed finite set of tasks with precedence on a finite
number of processors with goal to minimize execution time is
NP-hard.

¢ Hu level scheduling algorithm assigns priority to task 7 based
on the level.

o Level is the greatest sum of execution times of tasks on a path
in the precedence graph from 7 to another task with no
dependents.

e It is a critical path method that is not optimal, but
approximates an optimal solution for most graphs.

e List scheduler assigns tasks to processors based on priorities.

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 35 /44



Precedence Example Revisited
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A Two Processor Parallel Schedule

Processor A:| 1 3 5 6

Processor B: 2 4
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11.5.1 Scheduling Anomalies and

Brittleness

e All thread scheduling algorithms are brittle (i.e., small changes
can have big, unexpected consequences).

e Let us consider a schedule for a multiprocessor (or multicore).

¢ Theorem (Richard Graham, 1976):
If a task set with fixed priorities, execution times, and
precedence constraints is scheduled according to prior-
ities on a fixed number of processors, then increasing
the number of processors, reducing execution times,
or weakening precedence constraints can increase the
schedule length.
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Richard’s Anomalies
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Richard’s Anomalies: Smaller Computation Time
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Richard’s Anomalies: More Processors
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Richard’s Anomalies: Less Precedences

Suppose precedences between task 4 and tasks 7 and 8 are removed.
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Richard’s Anomalies with Mutexes
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Concluding Remarks

Scheduling is inherently difficult

e SW execution time hardly to predict accurately.
e The actual dynamic behavior can be quite different.

Timing behavior under all known task scheduling strategies is
brittle.

Small changes can have big (and unexpected) consequences.

Unfortunately, since execution times are so hard to predict, such
brittleness can result in unexpected system failures.
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