
Introduction to Embedded Systems

Chapter 10 Multitasking

Hao Zheng

Comp. Sci. & Eng.
U. of South Florida

2

Concurrency

source: wiki

3

Layers of Abstraction for
Concurrency in Programs

Uses of concurrency:
¢  Reacting to external

events (interrupts)
¢  Exception handling

(software interrupts)
¢  Creating the illusion of

simultaneously running
different programs
(multitasking)

¢  Exploiting parallelism in
the hardware (e.g. multi-
core machines).

¢  Dealing with real-time
constraints.

4

Threads

•  An imperative program is a sequence of steps where data
are transformed in each step.

•  A thread is an imperative program.
•  Threads maintain separate registers and stacks, but share

memory space.
•  Running threads is cheaper by avoiding expensive

MMU operations.
•  Threads create an illusion of concurrency.

•  But are interleaved in hardware.
•  After a thread is created, it is in active or suspend state.
•  Scheduler chooses which threads to execute.

5

Thread Scheduling

¢  Without an OS, multithreading is achieved with interrupts.
Timing is determined by external events.

¢  Generic OSs (Linux, Windows, OSX, …) provide thread
libraries (like “pthreads”) and provide no fixed guarantees about
when threads will execute.

¢  Real-time operating systems (RTOSs), like QNX, VxWorks,
RTLinux, Windows CE, support a variety of ways of controlling
when threads execute (priorities, preemption policies, deadlines,
…).

¢  Processes are collections of threads with their own memory, not
visible to other processes. Segmentation faults are attempts to
access memory not allocated to the process. Communication
between processes must occur via OS facilities (like pipes or
files).

6

Posix Threads (PThreads)

PThreads is an API (Application Program Interface)
implemented by many operating systems, both real-time
and not. It is a library of C procedures.

Standardized by the IEEE in 1988 to unify variants of
Unix. Subsequently implemented in most other operating
systems.

An alternative is Java, which typically uses PThreads
under the hood, but provides thread constructs as part of
the programming language.

7

Creating and Destroying Threads

#include <pthread.h>

void* threadFunction(void* arg) {
 ...

 return pointerToSomething or NULL;

}

int main(void) {

 pthread_t threadID;
 void* exitStatus;

 int value = something;

 pthread_create(&threadID, NULL, threadFunction, &value);
 ...

 pthread_join(threadID, &exitStatus);

 return 0;

}

Can pass in pointers to shared variables.

Can return pointer to something.
Do not return a pointer to an local variable!

Return only after all threads have terminated.

Becomes arg parameter to
threadFunction.
Why is it OK that this is a
local variable?

Create a thread (may or may not start running!)

8

Notes on Implementing Threads

¢  Threads may or may not begin running when created.
¢  A thread may be suspended between any two atomic

instructions (typically, assembly instructions, not C
statements!) to execute another thread and/or interrupt service
routine.
¢  This can lead to many serious problems.

¢  A scheduler needed to decide which threads to execute, when
to execute, and for how long.

¢  Scheduling policies:
¢  fairness,
¢  priority
¢  timing constraints.

9

Notes on Implementing Threads (cont’d)

¢  Cooperative multitasking does not interrupt a thread.
¢  Threads required to release the processor.
¢  A thread may run for long time starving other threads.
¢  Most Oss use timer interrupts to pause threads.
¢  A jiffy is the time interval when the system clock is

interrupted.
¢  Small jiffy degrades performance, large one may violate

time constraints. Usually in 1ms – 10 ms.
¢  Threads can often be given priorities, and these may or may

not be respected by the thread scheduler.
¢  Threads may block on semaphores and mutexes (we will do

this later in this lecture).

10

Typical Thread Programming Problem

“The Observer pattern defines a one-to-many
dependency between a subject object and any number of
observer objects so that when the subject object changes
state, all its observer objects are notified and updated
automatically.”

Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides
(Addison-Wesley Publishing Co., 1995. ISBN: 0201633612):

11

Observer Pattern in C
// Value that when updated triggers notification
// of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

12

Observer Pattern in C
// Value that when updated triggers notification of
// registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

typedef void* notifyProcedure(int);
struct element {
 notifyProcedure* listener;
 struct element* next;
};
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

13

Observer Pattern in C
// Value that when updated triggers notification of
registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {
 if (head == 0) {
 head = malloc(sizeof(elementType));
 head->listener = listener;
 head->next = 0;
 tail = head;
 } else {
 tail->next = malloc(sizeof(elementType));
 tail = tail->next;
 tail->listener = listener;
 tail->next = 0;
 }
}

14

Observer Pattern in C
// Value that when updated triggers notification of
registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to update the value
void update(int newValue) {
 value = newValue;
 // Notify listeners.
 elementType* element = head;
 while (element != 0) {
 (*(element->listener))(newValue);
 element = element->next;
 }
}

15

Model of the Update Procedure

16

Sequential Program Example

// Example of notify procedure
void print(int arg) {
 printf(“%d”, arg);
}

int main(void) {
 addListener(&print);
 addListener(&print);
 update(1);
 addListener(&print);
 update(2);
 return 0;
}

Output: ???	

17

Observer Pattern in C: Will this work in a
multithreaded context?

// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {
 if (head == 0) {
 head = malloc(sizeof(elementType));
 head->listener = listener;
 head->next = 0;
 tail = head;
 } else {
 tail->next = malloc(sizeof(elementType));
 tail = tail->next;
 tail->listener = listener;
 tail->next = 0;
 }
}

18

Using Posix mutexes on
the observer pattern in C

#include <pthread.h>
...
pthread_mutex_t lock;

void addListener(notify listener) {
 pthread_mutex_lock(&lock);
 ...
 pthread_mutex_unlock(&lock);
}

void update(int newValue) {
 pthread_mutex_lock(&lock);
 value = newValue;
 elementType* element = head;
 while (element != 0) {
 (*(element->listener))(newValue);
 element = element->next;
 }
 pthread_mutex_unlock(&lock);
}

int main(void) {
 pthread_mutex_init(&lock, NULL);
 ...
}

However, this carries a
significant deadlock risk.
The update procedure
holds the lock while it
calls the notify
procedures. If any of
those stalls trying to
acquire another lock, and
the thread holding that
lock tries to acquire this
lock, deadlock results.

19

Handling Deadlock

•  Deadlock is a state where the program cannot
progress any further.

•  The program must be aborted.
•  To avoid deadlock

• Disable interrupts (no locks used).
• Use only one lock throughout the entire multi-threaded

program. What if there are several shared resources?
• Ensure that all locks are acquired in the same order

among all threads – break module programming.

20

One possible “fix”
with Insidious Error

 #include <pthread.h>
 ...
 pthread_mutex_t lock;

 void addListener(notify listener) {
 pthread_mutex_lock(&lock);
 // add listener to the list...
 pthread_mutex_unlock(&lock);
 }

 void update(int newX) {
 pthread_mutex_lock(&lock);
 /* create a hardcopy the list
 of listeners */
l0: pthread_mutex_unlock(&lock);
l1: /* update listeners with ‘newX’ */
 elementType* element = headCopy;
 while (element != 0) {
 (*(element->listener))(newX);
 element = element->next;
 }
 }

What is wrong with this?

Notice that if multiple
threads call update(), the
updates will occur in
some order. But there is
no assurance that the
listeners will be notified in
the same order. Listeners
may be mislead about the
“final” value.

21

10.3 Processes and Message Passing

•  Processes are imperative programs with their own
memory space.
• Threads share the same memory addr space.

•  Require a memory management unit (MMU) to protect
a process from accidental access to its memory and
provides address translation.

•  Communication b/w processes uses pipes, files, or
message passing.

•  Message passing uses a carefully controlled section of
shared memory only accessible through special expert
written library calls.

22

A Simple Message Passing Application

void* producer(void* arg) {
 for (int i = 0; i < 10; i++) {

 send(i);
 }
 return NULL;
}

void* consumer(void* arg) {
 while(1) {
 printf("received %d\n", get());
 }
 return NULL;
}

23

A Simple Message Passing Application

int main(void) {
 pthread_t threadID1, threadID2;
 void* exitStatus;
 pthread_create(&threadID1, NULL, producer, NULL);
 pthread_create(&threadID2, NULL, consumer, NULL);
 pthread_join(threadID1, &exitStatus);
 pthread_join(threadID2, &exitStatus); return 0;
}

Difference from the multithreaded programs?

24

One Way to Implement Message Passing

/* Use a linked list as the buffer */
typedef struct element element_t;
element_t *head = 0, *tail = 0;

/* Size of the buffer */
int size = 0;

/* mutex lock */
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

/* Signal for communication */
pthread_cond_t sent = PTHREAD_COND_INITIALIZER;

25

Message Passing: Send Operation

void send(int message) {
 pthread_mutex_lock(&mutex);
 /*
 Add message into the buffer
 */
l0: pthread_cond_signal(&sent);
l1: pthread_mutex_unlock(&mutex);
}

int get() {
 /* some initialization */
 pthread_mutex_lock(&mutex);
 while (size == 0)
 pthread_cond_wait(&sent, &mutex);
 /*
 Extract a message from the buffer
 */
 pthread_mutex_unlock(&mutex);
 return result;
}

•  It is critical to keep the order of l0 and l1.
•  Otherwise, a deadlock may occur.
•  In the above code, the size can become unbounded!

26

Concurrency is Just Hard…

Sutter and Larus observe:

“humans are quickly overwhelmed by concurrency and find
it much more difficult to reason about concurrent than
sequential code. Even careful people miss possible
interleavings among even simple collections of partially
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency revolution. ACM
Queue, 3(7), 2005.

27

It is Threads that are Hard!

•  Threads are sequential processes that share memory and are
wildly non-deterministic.
•  From the perspective of any thread, the entire state of the
universe can change between any two atomic actions (itself an
ill-defined concept).
•  This can lead to insidious errors, races, and deadlocks.
•  Problems can lurk for years, even in intensively used
programs.
•  The programmer’s job is to prune away the nondeterminism
by imposing constraints on execution order (e.g., mutexes) and
limiting shared data accesses (e.g., OO design).

