CIS4930/6930 Principles of Cyber-Physical Systems

Chapter 12 Invariants & Temporal Logic

Hao Zheng U. Of South Florida

When is a Design of a System "Correct"?

A design is correct when it meets its specification (requirements) in its operating environment

"A design without specification cannot be right or wrong, it can only be surprising!"

Simply running a few tests is not enough!

Many embedded systems are deployed in safety-critical applications (avionics, automotive, medical, ...)

Ariane disaster, 1996 \$500 million software failure

<msblast.exe> (the primary executable of the exploit)
I just want to say LOVE YOU SAN!!
billy gates why do you make this possible ? Stop
making money and fix your software!!
windowsupdate.com
start %s
tftp -i %s GET %s
%d.%d.%d.%d
%i.%i.%i.%i

Estimated SW bugs cost: > \$50 billion

Ariane 5 Explosion

"It took the European Space Agency 10 years and \$7 billion to produce Ariane 5. All it took to explode that rocket less than a minute into its maiden voyage last June, scattering fiery rubble across the mangrove swamps of French Guiana, was a small computer program trying to stuff a 64-bit number into a 16-bit space"

A bug and a crash, J. Gleick, New York Times, Dec 1996

Prius Brake Problems Blamed on Software Glitches

"Toyota officials described the problem as a "disconnect" in the vehicle's complex anti-lock brake system (ABS) that causes less than a one-second lag. With the delay, a vehicle going 60 mph will have traveled nearly another 90 feet before the brakes begin to take hold"

CNN Feb 4, 2010

Specification and Verification

Specification

A mathematical statement of the design objective (desired properties of the system)

Verification

Does the designed system achieve its objective in the operating environment?

Model-Based Design: Verification

Need a mathematical way to write models and specifications so that an algorithm can process it

Temporal Logic

• A mathematical way to express properties of a system over time

- E.g., Behavior of an FSM or Hybrid System
- o Many flavors of temporal logic
 - Propositional temporal logic (we will study this)
 - Real-time temporal logic

• Amir Pnueli won ACM Turing Award, in part, for the idea of using temporal logic for specification

Example: Specification of the *SpaceWire* Protocol (European Space Agency standard)

8.5.2.2 ErrorReset

- a. The *ErrorReset* state shall be entered after a system reset, after link operation is terminated for any reason or if there is an error during link initialization.
- b. In the *ErrorReset* state the Transmitter and Receiver shall all be reset.
- c. When the reset signal is de-asserted the *ErrorReset* state shall be left unconditionally after a delay of 6,4 μ s (nominal) and the state machine shall move to the *ErrorWait* state.
- d. Whenever the reset signal is asserted the state machine shall move immediately to the *ErrorReset* state and remain there until the reset signal is de-asserted.

Propositional Logic

Atomic formulas: Statements about an input, output, or state of a state machine. Examples:

formula	meaning
x	x is present
x = 1	x is present and has value 1
S	machine is in state s

These are propositions (true or false statements) about a state machine with input or output *x* and state *s*.

Propositional Logic

Propositional logic formulas: More elaborate statements about an input, output, or state of a state machine. Examples:

formula	meaning
$p_1 \wedge p_2$	p_1 and p_2 are both true
$p_1 \lor p_2$	either p_1 or p_2 is true
$p_1 \Longrightarrow p_2$	if p_1 is true, then so is p_2
$\neg p_1$	true if p_1 is false

Here, p_1 and p_2 are either atomic formulas or propositional logic formulas.

Execution Trace of a State Machine

An **execution trace** is a sequence of the form

$$q_0, q_1, q_2, q_3, \ldots,$$
 State : q_i

where $q_j = (x_j, s_j, y_j)$ where s_j is the state at step j, x_j is the input valuation at step j, and y_j is the output valuation at step j. Can also write as

$$s_0 \xrightarrow{x_0/y_0} s_1 \xrightarrow{x_1/y_1} s_2 \xrightarrow{x_2/y_2} \cdots$$

Reaction : $s_i \xrightarrow{x_i/y_i} s_{i+1}$

Propositional Logic on Traces

A propositional logic formula p holds for a trace

 $q_0, q_1, q_2, q_3, \ldots,$

if and only if it holds for q_0 .

This may seem odd, but we will provide temporal logic operators to reason about the trace.

Linear Temporal Logic (LTL)

LTL formulas: Statements about an execution trace $q_0, q_1, q_2, q_3, \ldots$,

formula	meaning
p	p holds in q_0
Gφ	$\boldsymbol{\phi}$ holds for every suffix of the trace
F φ	$\boldsymbol{\phi}$ holds for some suffix of the trace
Χφ	ϕ holds for the trace q_1, q_2, \cdots
$\phi_1 \mathbf{U} \phi_2$	ϕ_1 holds for all suffixes of the trace until a suffix for which ϕ_2 holds.

Here, p is propositional logic formula and ϕ is either a propositional logic or an LTL formula.

Linear Temporal Logic (LTL)

LTL formulas: Statements about an execution trace

 $q_0, q_1, q_2, q_3, \ldots,$

formula	mnemonic
р	proposition
Gφ	globally
F φ	finally, future, eventually
Χφ	next state
$\phi_1 U \phi_2$	until

Here, p is propositional logic formula and ϕ is either a propositional logic or an LTL formula.

LTL Operator: G (Globally, Always)

The LTL formula $\mathbf{G}p$ holds for a trace

 $q_0, q_1, q_2, q_3, \ldots,$

if and only if it holds for every suffix of the trace:

$$q_0, q_1, q_2, q_3, \dots$$

 q_1, q_2, q_3, \dots
 q_2, q_3, \dots
 q_3, \dots

If p is a propositional logic formula, this means it holds for each q_i .

LTL Operator: F (Eventually, Finally)

The LTL formula $\mathbf{F}p$ holds for a trace

 $q_0, q_1, q_2, q_3, \ldots,$

if and only if it holds for some suffix of the trace:

$$q_0, q_1, q_2, q_3, \dots$$

 q_1, q_2, q_3, \dots
 q_2, q_3, \dots
 q_3, \dots

If p is a propositional logic formula, this means it holds for some q_i .

Propositional Linear Temporal Logic

LTL operators can apply to LTL formulas as well as to propositional logic formulas.

E.g. Every input *x* is eventually followed by an output *y*

$$Globally (at any point in time) If x occurs It is eventually followed by y$$

Every input *x* is eventually followed by an output *y*

The LTL formula $\mathbf{G}(x \implies \mathbf{F}y)$ holds for a trace

 $q_0, q_1, q_2, q_3, \ldots,$

if and only if it holds for any suffix of the trace where x holds, there is a suffix of that suffix where y holds:

 $q_0, q_1, q_2, q_3, \dots$ q_1, q_2, q_3, \dots y holds x holds q_2, q_3, \dots q_3, \dots

Propositional Temporal Logic

Does the following hold?

$$\mathbf{G}(x \implies \mathbf{F}y)$$

input: *x*: pure **output:** *y*: pure

Propositional Temporal Logic

Does the following hold?

$$\mathbf{G}(x \implies \mathbf{F}y)$$

input: x: pure
output: y: pure

no

LTL Operator: X (Next)

The LTL formula $\mathbf{X}p$ holds for a trace

 $q_0, q_1, q_2, q_3, \ldots,$

if and only if \mathbf{p} holds for the suffix q_1, q_2, q_3, \ldots

 $q_0, q_1, q_2, q_3, \dots$ q_1, q_2, q_3, \dots q_2, q_3, \dots q_3, \dots

LTL Operator: U (Until)

The LTL formula $p_1 U p_2$ holds for a trace

 $q_0, q_1, q_2, q_3, \ldots,$

if and only if p_2 holds for some suffix of the trace, and p_1 holds for all previous suffixes:

 p_1 holds

 p_2 holds (and maybe p_1 also)

Examples: What do they mean?

• G F p p holds infinitely often

o F G *p*

Eventually, p holds henceforth

 $\mathbf{o} \mathbf{G}(p \Longrightarrow \mathbf{F} q)$

Every p is eventually followed by a q

 $\bullet \mathbf{F}(p \Longrightarrow (\mathbf{X} \mathbf{X} q))$

Every p is followed by a q two reactions later

Remember:

- Gp p holds in all states
- Fp p holds eventually
- Xp p holds in the next state

Example

- $\mathbf{G}(p \vee q)$ $\mathbf{F}(p \vee q)$ $\mathbf{F}(p \wedge q)$
- $\mathbf{G}(p =>(p \mathbf{U} q))$ $\mathbf{G}(q => \mathbf{F}p)$

25

Some Points to Ponder

- A mathematical specification only includes properties that the system must or must not have
- It requires human judgment to decide whether that specification constitutes "correctness"
- Getting the specification right is often as hard as getting the design right!
 - Often the specification stage can reveal a lot of design flaws.