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When is a Design of a System “Correct”? 

A design is correct when it meets its specification 
(requirements) in its operating environment 
 
“A design without specification cannot be right or wrong,  

it can only be surprising!” 
 
Simply running a few tests is not enough! 
 
Many embedded systems are deployed in safety-critical 
applications (avionics, automotive, medical, …) 
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Ariane disaster, 1996 
$500 million software failure 

FDIV error, 1994 
$500 million 

Estimated SW bugs cost: > $50 billion 
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                  Ariane 5 Explosion 

“It took the European Space Agency 10 years and $7 billion to produce 
Ariane 5. All it took to explode that rocket less than a minute into its 

maiden voyage last June, scattering fiery rubble across the mangrove 
swamps of French Guiana, was a small computer program trying to stuff 

a 64-bit number into a 16-bit space” 

  

 A bug and a crash, J. Gleick, New York Times, Dec 1996 
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 Prius Brake Problems Blamed on Software Glitches 

“Toyota officials described the problem as a "disconnect" in the vehicle's 
complex anti-lock brake system (ABS) that causes less than a one-

second lag. With the delay, a vehicle going 60 mph will have traveled 
nearly another 90 feet before the brakes begin to take hold” 

 CNN Feb 4, 2010 
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Specification and Verification 

Specification 
A mathematical statement of the design objective 
(desired properties of the system) 
 
Verification 
Does the designed system achieve its objective in the 
operating environment? 
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Model-Based Design: Verification 

Verifier 
Does model satisfy spec.? 

Model 

Specification 

No 

Use error trace information to revise model/spec. 

Yes 

Synthesize system 

Need a mathematical way to write models and specifications 
so that an algorithm can process it  
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Temporal Logic 

¢ A mathematical way to express properties of a system 
over time	

l  E.g., Behavior of an FSM or Hybrid System	


¢  Many flavors of temporal logic	

l  Propositional temporal logic  (we will study this)	


l  Real-time temporal logic  	

	

¢ Amir Pnueli won ACM Turing Award, in part, for the idea 

of using temporal logic for specification	
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Example: Specification of the SpaceWire 
Protocol (European Space Agency 
standard) 
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Propositional Logic 

Atomic formulas: Statements about an input, output, or 
state of a state machine. Examples: 
 
 
 
 
 
 
These are propositions (true or false statements) about a 
state machine with input or output x and state s. 

formula meaning 
x x is present 
x = 1  x is present and has value 1 
s machine is in state s 



11 

Propositional Logic 

Propositional logic formulas: More elaborate 
statements about an input, output, or state of a state 
machine. Examples: 
 
 
 
 
 
 
Here, p1 and p2 are either atomic formulas or propositional 
logic formulas. 

formula meaning 
  p1� p2 p1 and p2 are both true

either p1 or p2 is true
if p1 is true, then so is p2

true if p1 is false

p1� p2

p1 =� p2

¬p1
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Execution Trace of a State Machine 

An execution trace is a sequence of the form

q0, q1, q2, q3, . . . ,

where q j = (x j,s j,y j) where s j is the state at step j, x j is
the input valuation at step j, and y j is the output valuation
at step j. Can also write as

s0
x0/y0���⇥ s1

x1/y1���⇥ s2
x2/y2���⇥ · · ·

Reaction : s
i

xi/yi���! s
i+1

State : qi
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Propositional Logic on Traces 

A propositional logic formula p holds for a trace

q0, q1, q2, q3, . . . ,

if and only if it holds for q0.

This may seem odd, but we will provide temporal logic oper-
ators to reason about the trace.
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Linear Temporal Logic (LTL) 

LTL formulas: Statements about an execution trace 
 
 
 
 
 
 
 
 
Here, p is propositional logic formula and   is either a 
propositional logic or an LTL formula. 

formula meaning 
  

 
 

q0, q1, q2, q3, . . . ,

p p holds in q0

� holds for every su�x of the trace

� holds for some su�x of the trace

� holds for the trace q1,q2, · · ·
�1 holds for all su�xes of the trace
until a su�x for which �2 holds.

G�
F�
X�

�1U�2

�
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Linear Temporal Logic (LTL) 

LTL formulas: Statements about an execution trace 
 
 
 
 
 
 
 
 
Here, p is propositional logic formula and   is either a 
propositional logic or an LTL formula. 

formula mnemonic 
  proposition 

globally 
finally, future, eventually 
next state 
until 
 

q0, q1, q2, q3, . . . ,

p

G�
F�
X�

�1U�2

�
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LTL Operator: G (Globally, Always) 

The LTL formula Gp holds for a trace

q0, q1, q2, q3, . . . ,

if and only if it holds for every su�x of the trace:

q0, q1, q2, q3, . . .

q1, q2, q3, . . .

q2, q3, . . .

q3, . . .

If p is a propositional logic formula, this means it holds for
each qi.
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LTL Operator: F (Eventually, Finally) 

The LTL formula Fp holds for a trace

q0, q1, q2, q3, . . . ,

if and only if it holds for some su�x of the trace:

q0, q1, q2, q3, . . .

q1, q2, q3, . . .

q2, q3, . . .

q3, . . .

If p is a propositional logic formula, this means it holds for
some qi.
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Propositional Linear Temporal Logic 

LTL operators can apply to LTL formulas as well as to 
propositional logic formulas. 
 
E.g. Every input x is eventually followed by an output y 

Globally 
(at any point in time) 
                      If x occurs  
                                    It is eventually followed by y 

G(x =� Fy)
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Every input x is eventually followed by an 
output y 

x holds 
y holds 

The LTL formula G(x =� Fy) holds for a trace

q0, q1, q2, q3, . . . ,

if and only if it holds for any su�x of the trace where x holds,
there is a su�x of that su�x where y holds:

q0, q1, q2, q3, . . .

q1, q2, q3, . . .

q2, q3, . . .

q3, . . .



20 

Propositional Temporal Logic 

Does the following hold? 
G(x =� Fy)
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Propositional Temporal Logic 

Does the following hold? 

no 

G(x =� Fy)
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LTL Operator: X (Next) 

The LTL formula Xp holds for a trace

q0, q1, q2, q3, . . . ,

if and only if it holds for the su�x q1, q2, q3, . . .

q0, q1, q2, q3, . . .

q1, q2, q3, . . .

q2, q3, . . .

q3, . . .

p 
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LTL Operator: U (Until) 

The LTL formula p1Up2 holds for a trace

q0, q1, q2, q3, . . . ,

if and only if p2 holds for some su�x of the trace, and p1
holds for all previous su�xes:

q0, q1, q2, q3, . . .

q1, q2, q3, . . .

q2, q3, . . .

q3, . . .
p1 holds

p2 holds (and maybe p1 also)
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Examples: What do they mean? 

¢  G F p 
p holds infinitely often 

¢  F G p 
Eventually, p holds henceforth 

¢  G( p => F q )  
Every p is eventually followed by a q 

¢  F( p => (X X q) ) 
Every p is followed by a q two reactions later 

Remember: 
Gp    p holds in all states 
Fp     p holds eventually 
Xp     p holds in the next state 
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Example 

p p q p, q

G(p∨q  )	


G(q => Fp )	


F(p∨q  )	


G(p =>( p U q ))	


F(p ^ q)
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Some Points to Ponder 

¢  A mathematical specification only includes properties 
that the system must or must not have 

¢  It requires human judgment to decide whether that 
specification constitutes “correctness” 

¢  Getting the specification right is often as hard as 
getting the design right! 
¢ Often the specification stage can reveal a lot of design 

flaws. 
 


