
CIS 4930/6930: Principles of
Cyber-Physical Systems

Homework Solutions

Hao Zheng

Department of Computer Science and Engineering
University of South Florida

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 1 / 44

HW 2

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 2 / 44

HW 2: Chapter 3, Problem 2

Cooling Heating

wait1

wait2

wait3

temp ≤ 20/heaton

temp > 20/heatoff

true/true/

true/

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 3 / 44

HW 2: Chapter 3, Problem 2

Cooling Heating

input: temp, clk : R
outputs: heaton, heatoff: pure

clk := 121

temp ≤ 20 ∧ clk > 120/heaton, clk := 0

temp > 20 ∧ clk > 30/heatoff , clk := 0

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 4 / 44

HW 2: Chapter 3, Problem 5

A B C
X/0 X/0

X/1

Problem 5:

a x = (p, p, p, p, p, . . .), y = (0, 1, 1, 0, 0, . . .) No

b x = (p, p, p, p, p, . . .), y = (0, 1, 1, 0, a, . . .) Yes

c x = (a, p, a, p, a, . . .), y = (a, 1, a, 0, a, . . .) No

d x = (p, p, p, p, p, . . .), y = (0, 0, a, a, a, . . .) Yes

e x = (p, p, p, p, p, . . .), y = (0, a, 0, a, a, . . .) No

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 5 / 44

HW 2: Chapter 3, Problem 5

A B C
X/0 X/0

X/1

Problem 5:

a x = (p, p, p, p, p, . . .), y = (0, 1, 1, 0, 0, . . .) No

b x = (p, p, p, p, p, . . .), y = (0, 1, 1, 0, a, . . .) Yes

c x = (a, p, a, p, a, . . .), y = (a, 1, a, 0, a, . . .) No

d x = (p, p, p, p, p, . . .), y = (0, 0, a, a, a, . . .) Yes

e x = (p, p, p, p, p, . . .), y = (0, a, 0, a, a, . . .) No

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 5 / 44

HW 2: Problem 3

Traffic Pedestrian

sigR , sigY , sigG

Pedestrian

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 6 / 44

HW 2: Problem 3

red, crossing

(green, none)

count := 0

count ≥ 60/SigG , count := 0

count := count + 1

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 7 / 44

HW 2: Problem 3

(green, none)

(yellow, waiting)

(pending, waiting)

count < 60/count := count + 1

count < 60/count := count + 1

count ≥ 60/sigY , count := 0

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 8 / 44

HW 2: Problem 3

(yellow, waiting)

(pending, waiting) count := count + 1

count ≥ 60/sigY , count := 0

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 9 / 44

HW 2: Problem 3

red, crossing

(yellow, waiting)

count := 0

count ≥ 5/count := 0

count := count + 1

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 10 / 44

HW 2: Problem 3

red, crossing

(green, none)

(yellow, waiting)

(pending, waiting)

count := 0

count ≥ 60/SigG , count := 0

count := count + 1

count < 60/count := count + 1

count < 60/count := count + 1

count ≥ 60/sigY , count := 0

count ≥ 60/sigY , count := 0count ≥ 60/sigY , count := 0
count ≥ 5/sigR, count := 0

count := count + 1

count := count + 1

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 11 / 44

HW 3: Pointers and Hints

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 12 / 44

HW 3, Problem 1

mtype = {sigR, sigY, sigG};

chan signal = [0] of {mtype};

chan ped = [0] of {bit};

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 13 / 44

HW 3, Problem 1

active proctype traffic() {

...

Green:

if /* Not allowed by SPIN */

:: ped?1 && count < 60 -> ...; goto Pending;

:: ped?1 && count >= 60 -> ...; goto Yellow;

:: count < 60 -> ...; goto Green;

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 14 / 44

HW 3, Problem 1

active proctype traffic() {

...

Green: ped?pedBit; /* Lead to invalid end state! */

if

:: pedBit==1 && count < 60 -> ...; goto Pending;

:: pedBit==1 && count >= 60 -> ...; goto Yellow;

:: count < 60 -> count++; goto Green;

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 15 / 44

HW 3, Problem 1

/* Also lead to invalid end state! */

active proctype traffic() {

...

Green:

if

:: ped?1 -> count < 60 -> ...; goto Pending;

:: ped?1 -> count >= 60 -> ...; goto Yellow;

:: count < 60 -> ...; goto Green;

...

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 16 / 44

HW 3, Problem 1

/* Still lead to invalid end state! */

active proctype traffic() {

...

Green:

if

:: ped?1 -> if

:: count < 60 -> count++; goto Pending;

:: count >= 60 -> signal!sigY;

count=0;

goto Yellow;

fi

:: count < 60 -> ...; goto Green;

...

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 17 / 44

HW 3, Problem 1

/* Finally ... */

active proctype traffic() {

...

Green:

if

:: ped?1 -> if

:: count < 60 -> count++; goto Pending;

:: count >= 60 -> count=0;

goto Yellow;

fi

:: count < 60 -> ...; goto Green;

...

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 18 / 44

HW 3, Problem 1, Check Properties

Property #1
Pedestrians are allowed to cross the street only when the traffic light
is red,

bool traffic_red = false;

active proctype traffic() {

Red: ... traffic_red = false; goto Green; ...

Green: ...

Pending: ...

Yellow: ... traffic_red = true; goto red ... }

active proctype traffic() { ... }

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 19 / 44

HW 3, Problem 1, Check Properties

Property #1
Pedestrians are allowed to cross the street only when the traffic light
is red,

bool traffic_red = false;

bool ped_cross = false;

active proctype traffic() { ... }

active proctype pedestrian() {

Crossing: signal?sigG -> ped_cross = false; goto None;

None: ped!1 -> ped_cross = false; goto Waiting;

Waiting: signal?sigR -> ped_cross = true; goto Crossing;

}

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 20 / 44

HW 3, Problem 1, Check Properties

Property #1
Pedestrians are allowed to cross the street only when the traffic light
is red,

bool traffic_red = false;

bool ped_cross = false;

active proctype traffic() { ... }

active proctype pedestrian() { ... }

active proctype monitor() { /* Prop \#1 is checked */

assert(ped_cross -> traffic_red);

}

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 21 / 44

HW 3: Post-Submission Discussioins

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 22 / 44

HW 3, Problem 1

mtype = {sigR, sigY, sigG};

chan signal = [0] of {mtype};

chan ped = [0] of {bit};

int count;

bool traffic_red = true; /* The initial state of traffic light is red */

bool ped_cross = true; /* The initial state of pedestrian light is crossing */

bool ped_pres = false;

active proctype traffic()

{

red:

if

:: atomic { count >= 60 -> signal!sigG; count = 0;

traffic_red = false; goto green; }

:: atomic { else -> count++; traffic_red = true; goto red; }

fi;

...

}

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 23 / 44

HW 3, Problem 1, How SPIN Works?

active proctype traffic()

{

red:

if

:: atomic { count >= 60 -> signal!sigG; count = 0;

traffic_red = false; goto green; }

:: atomic { else -> count++; traffic_red = true; goto red; }

fi;

...

}

active proctype pedestrian()

{ crossing: atomic { signal?sigG -> ped_pres = false;

ped_cross = false; goto none; }

... }

active proctype monitor()

{ assert(!ped_cross || traffic_red); }

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 24 / 44

HW 3, Problem 1, How SPIN Works?

active proctype traffic()

{

red:

if

:: atomic { count >= 60 -> signal!sigG; count = 0;

traffic_red = false; goto green; }

:: atomic { else -> count++; traffic_red = true; goto red; }

fi;

...

}

active proctype pedestrian()

{ crossing: atomic { signal?sigG -> ped_pres = false;

ped_cross = false; goto none; }

... }

ltl prop1 { [](!ped_cross || traffic_red) }

ltl prop2 { [](ped_pres -> <> ped_cross) }

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 25 / 44

HW 3, Problem 1, Another Version

#define RED 1

#define YELLOW 2

#define GREEN 3

#define PENDING 4

#define CROSSING 5

#define NONE 6

#define WAITING 7

byte traffic_state = RED;

byte ped_state = CROSSING;

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 26 / 44

HW 3, Problem 1, Another Version

active proctype traffic()

{

do

:: traffic_state==RED ->

if

:: atomic { count >= 60 -> signal!GREEN; count = 0;

traffic_state = GREEN; }

:: atomic { else -> count++; traffic_state = RED; }

fi;

:: traffic_state==GREEN ->...

:: traffic_state == PENDING -> ...

:: traffic_state == YELLOW -> ...

od

}

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 27 / 44

HW 3, Problem 1, Another Version

active proctype pedestrian()

{ do

:: ped_state == CROSSING ->

atomic { signal?GREEN -> ped_state = NONE; }

:: ped_state == NONE -> atomic { ped!1 -> ped_state = WAITING; }

:: ped_state == WAITING ->

atomic { signal?RED -> ped_state = CROSSING; }

od }

ltl prop1 { []((ped_state != CROSSING) || (traffic_state==RED)) }

ltl prop2 { [](ped_state == WAITING -> <> (ped_state == CROSSING)) }

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 28 / 44

HW 4

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 29 / 44

Problem 1

true

false: a
x−→ b

¬x−−→ c
x−→ c . . .

true

true

true

false: b and c are different states.

false: a
x−→ b

x−→ a
¬x−−→ a

x−→ b
x−→ a

¬x−−→ a . . .

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 30 / 44

Problem 2

(a) ∨1≤i≤nFpi

(b) ∧1≤i≤nFpi

(c) F(p1 ∧ F(P2 ∧ F(p3 ∧ . . .)))

F(p1 ∧XF(P2 ∧XF(p3 ∧ . . .))) is the same as in (c). Why?

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 31 / 44

HW 5

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 32 / 44

Question 1

4
Hybrid Systems

— Exercises

1. Construct (on paper is sufficient) a timed automaton similar to that of Figure 4.7 which pro-
duces tick at times 1,2,3,5,6,7,8,10,11, · · · . That is, ticks are produced with intervals be-
tween them of 1 second (three times) and 2 seconds (once).

Solution: The following hybrid system will do the job:

23

4
Hybrid Systems

— Exercises

1. Construct (on paper is sufficient) a timed automaton similar to that of Figure 4.7 which pro-
duces tick at times 1,2,3,5,6,7,8,10,11, · · · . That is, ticks are produced with intervals be-
tween them of 1 second (three times) and 2 seconds (once).

Solution: The following hybrid system will do the job:

23

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 33 / 44

Question 1

4
Hybrid Systems

— Exercises

1. Construct (on paper is sufficient) a timed automaton similar to that of Figure 4.7 which pro-
duces tick at times 1,2,3,5,6,7,8,10,11, · · · . That is, ticks are produced with intervals be-
tween them of 1 second (three times) and 2 seconds (once).

Solution: The following hybrid system will do the job:

23

4
Hybrid Systems

— Exercises

1. Construct (on paper is sufficient) a timed automaton similar to that of Figure 4.7 which pro-
duces tick at times 1,2,3,5,6,7,8,10,11, · · · . That is, ticks are produced with intervals be-
tween them of 1 second (three times) and 2 seconds (once).

Solution: The following hybrid system will do the job:

23H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 33 / 44

Question 2(a)

SOLUTIONS

Notice that all states have the same refinement, and that all transitions except the one into mode
1 have the same guard. The transition into mode 1 results in a delay of two units before the
production of a tick event.

2. The objective of this problem is to understand a timed automaton, and then to modify it as
specified.

(a) For the timed automaton shown below, describe the output y. Avoid imprecise or sloppy
notation.

Solution: The system generates a discrete signal with the event sequence

(1,3,4,6,7,9,10, · · ·)

at times
1,3,4,6,7,9,10, · · · .

That is, the value of each output event is equal to the time at which it is produced, and the intervals
between events alternate between one and two seconds. Precisely,

y(t) =

8
<
:

t if t = 3k for some k 2 N
t if t = 3k +1 for some k 2 N0
absent otherwise

(b) Assume there is a new pure input reset, and that when this input is present, the hybrid
system starts over, behaving as if it were starting at time 0 again. Modify the hybrid
system from part (a) to do this.

Solution:

24 Lee & Seshia, Introduction to Embedded Systems, Solutions

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 34 / 44

Question 3

4. HYBRID SYSTEMS

3. You have an analog source that produces a pure tone. You can switch the source on or off by
the input event on or off. Construct a timed automaton that provides the on and off signals
as outputs, to be connected to the inputs of the tone generator. Your system should behave as
follows. Upon receiving an input event ring, it should produce an 80 ms-long sound consisting
of three 20 ms-long bursts of the pure tone separated by two 10 ms intervals of silence. What
does your system do if it receives two ring events that are 50 ms apart?

Solution: Assume the input alphabet is {ring,absent} and the output alphabet is {on,off ,absent}.
Then the following timed automaton will control the source of the tone:

silent 3tone 3

g1/ on
s(t) := 0

silent 1 tone 1

toneController

.

v(t) ∈{on, off, absent}

c(t) ∈{ring, absent}
silent 2

tone 2

g2 / off
s(t) := 0

g3 / on
s(t) := 0

g3 / on
s(t) := 0

g2 / off
s(t) := 0

g2 / off
s(t) := 0

Lee & Seshia, Introduction to Embedded Systems, Solutions 25

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 35 / 44

Question 3

l0
tone1
t ≤ 20

silent1
t ≤ 10

tone2
t ≤ 10

silent2
t ≤ 10

tone3
t ≤ 20

t := 0
ring/t := 0, on t = 20/off

t = 10/on

t = 20/offt = 10/on

t = 20/off

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 36 / 44

Question 5

4. HYBRID SYSTEMS

(b) Once the engine is started, a beeper is sounded and a red light warning is indicated
if there are passengers that have not buckled their seat belt. The beeper stops sounding
after 30 seconds, or as soon the seat belts are buckled, whichever is sooner. The warning
light is on all the time the seat belt is unbuckled. Hint: Assume the sensors provide a
warn event when the ignition is turned on and there is a seat with passenger not buckled
in, or if the ignition is already on and a passenger sits in a seat without buckling the
seatbelt. Assume further that the sensors provide a noWarn event when a passenger
departs from a seat, or when the buckle is buckled, or when the ignition is turned off.

Solution: Assume that the vehicle sensors provide the following input alphabet,

Inputs = {warn,noWarn,absent},

as suggested in the hint. The following model provides the requisite control:

g1 / (beep, light)
s(t) := 0

quiet beeping

seatbeltController

s(t) = 1
.

{beep, off, absent}

x(t) {warn, noWarn, absent}

g3 / (off, light)

light

g2 / (off, off)

g2 / (off, off)
{light, off, absent}

g1 / (beep, light)
s(t) := 0

The guards are given by

g1 = {(x(t),s(t)) | x(t) = warn}
g2 = {(x(t),s(t)) | x(t) = noWarn}
g3 = {(x(t),s(t)) | s(t) = 30 ^ x(t) = absent}.

5. A programmable thermostat allows you to select 4 times, 0 T1 · · · T4 < 24 (for a
24-hour cycle) and the corresponding setpoint temperatures a1, · · · ,a4. Construct a timed
automaton that sends the event ai to the heating systems controller. The controller maintains
the temperature close to the value ai until it receives the next event. How many timers and
modes do you need?

Lee & Seshia, Introduction to Embedded Systems, Solutions 27

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 37 / 44

Question 5

l0
t ≤ T1

l1
t ≤ T2

l2
t ≤ t3

l3
t ≤ T4

l3
t ≤ 24h

t := 0

t = T1/a1

t = T2/a2

t = T3/a3

t = T4/a4 t = 24h/t := 0

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 38 / 44

HW 7

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 39 / 44

Water Tank

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 40 / 44

Water Tank Trajectory

SOLUTIONS

tank1
tank2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Tank Levels

time

le
ve
l

The model exhibits Zeno behavior because the net outflow is 0.5 + 0.5 = 1.0, which is less than
the net inflow of 0.75. Thus, no matter how we switch the inflow between tanks, we cannot keep
water in both tanks past time 4.0. The hybrid system is designed to switch whenever one tank
becomes empty, and the time between these events gets infinitely small.

(b) A Zeno system may be regularized by ensuring that the time between transitions is
never less than some positive number e. This can be emulated by inserting extra modes
in which the hybrid automaton dwells for time e. Use regularization to make your model
from part (a) non-Zeno. Again, plot x1 and x2 for the same length of time as in the first
part. State the value of e that you used.

Solution: The Ptolemy II model for the regularized model is shown below:

In the above implementation, two modes have been added to take time, set to e = 0.01. Otherwise,
the model is the same as the original. A plot of the execution is shown below:

34 Lee & Seshia, Introduction to Embedded Systems, Solutions

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 41 / 44

Problem P2

• To show that concurrent access to a list may corrupt the data
structure.

• Modeling a linked list?

next

listener

next

listener

next

listener

next

listener

Use arrays in Promela.

bool next[4];

bool listener[4];

int tail = -1;

int head = -1;

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 42 / 44

Problem P2

proctype addListener()

{

if

:: head==-1 -> head = 0;

next[head]=true;

listener[head] = true;

tail = head;

:: else -> tail = tail+1;

next[tail] = true;

listener[tail] = true;

fi

}

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 43 / 44

Problem P2

init

{

next[0] = false; next[1] = false;

next[2] = false; next[3] = false;

listener[0] = false; listener[1] = false;

listener[2] = false; listener[3] = false;

atomic { run addListener(); run addListener();

run addListener(); run addListener(); };

(_nr_pr==1) ->

assert(listener[0] && ... && listener[3]);

}

H. Zheng (CSE USF) CIS 4930/6930: Principles of CPS 44 / 44

