

KJC002

Today's agenda:

- Initial comments and discussion of course goal
- Introductions
 - Course and lab instructors
- Boring administrative stuff - Syllabus, outline, etc.
- The bad news 🔅
- The good news 🙂
- Show me the money!
 - Solving for yearly and total salary
 - Using the right tool for the job
 - Mathcad

KJC003 On your desk... Telephone Computer You must be able to use both of these tools to be successful College of Engineering

KJC004

Software in your computer:

The specific objectives of this course:

- Mathematics package for *formula crunching*
- Spreadsheet for *number crunching*
- Overview of basic operation of the computer
- *Design methods* (for programming **and** non-programming problems)
- Programming in a high-level language for general problem solving

Introduction of instructor:

• Ken Christensen

Assistant Professor Computer Science and Engineering Ph.D. - N.C. State University, 1991

- Background
 - IBM 1983 1995
 - USF 1995 Present
- Publications, patents, and awards
 - 8 journal papers, 15 conference papers, and 10 U.S. patents (IBM)
 - 1997 USF outstanding undergraduate teaching award
 - 1998 USF Teaching Incentive Program (TIP) award
 - 1998 and 1999 ASEE/NASA Summer Faculty Fellowship at NASA-KSC
- Research

- Performance evaluation of computer networks.

http://www.csee.usf.edu/~christen

Introduction of teaching assistants:

- Li Zhou (20 hrs/wk) Graduate student (Computer Science and Engineering)
- Sujit Vaidya (15 hrs/wk)

Graduate student (Computer Science and Engineering)

KJC009

Administrative stuff:

- Goal is to make sure *you* understand...
 - Organization of this course (including Web content)
 - Course objectives and assignments
 - Expectations of performance
 - Availability of instructor and teaching assistants

KJC009a

Administrative stuff: (continued)

- Everything is on the Web...
 - http://www.csee.usf.edu/~christen/class7/class7.html

College of Engineering

Administrative stuff: (continued)

- Two written exams (given in class)
 - Exam #1 and #2 Both will be two-hour written exams
- Five "hands-on" quizzes (given in lab)...
 - Assignment of 6 problems one to two weeks before quiz
 - Quiz will be a random selection of 1 of the 6 problems and 1 new problem
 - » A student will roll a die to select the random problem
- Six lab exercises (given in lab)...
 - Short lecture
 - Then, a simple problem
 - Complete problem in lab and get checked-off before end of lab

The "bad news":

- No strain, no pain, no gain
- This course requires a lot of continuous work
 - Is not a "cram the night before" course
- How do you train for a sport?
 - 1 hour everyday for 20 days?
 - Or, 20 hours the day before the competition? \succ Think about this!
 - Why?

The "good news":

- No strain, no pain, no gain
- This is a very rewarding course... you will learn useful material
 - It will help you in your future engineering courses
 - It will help you find a job
- I believe that this is...

- THE MOST IMPORTANT ENGINEERING CORE COURSE

Which is why I love to teach this course! -

The "good news": (continued)

- No strain, no pain, no gain
- Why do this?

- Why not just become a business major?
 - Advantage = less work and higher grade point
 - Disadvantage = LOWER STARTING SALARY
 - Disadvantage = LOWER PROFESSIONAL SATISFACTION

Show me the money!

Show me the money...

• Invest \$1000 in the bank at 10% compounded yearly

End of year #1 ... \$1100

End of year #2 ... \$1200 or \$1210?

End of year #3 ... \$1300 or \$1331?

End of year #n ... What is the formula?

Same way we compute salary growth —

- Salary growth works in the same way (with compounding)
- Let's derive the formulas for,
 - Yearly salary for year N
 - Total salary after N years

Compute the \$\$\$ value of an engineering degree versus some other type of degree

- Inputs are:
 - Starting salary
 - Yearly raises
 - Number of years in career
- Outputs are:
 - Salary for a given year
 - Total salary for a given year

Engineering start = \$35,000 Business start = \$28,000 Yearly raise = 10% (given at the end of a year)

• Deriving the formulas...

Total_salary =
$$\sum_{j=1}^{N}$$
 start_salary * (1 + raise)^{j-1}

Total amount of money ______ at the end of N years

• Let's do an example...

Engineering starting salary = \$35,000 Business starting salary = \$28,000 Yearly raise = 10% (given at the end of a year)

Compute the total amount of money earned after 10 years for both majors.

