Summary of Key Probability Distributions

This handout contains a summary of some important probability distributions. The distributions summarized here are uniform (continuous), uniform (discrete), binomial, Poisson, exponential, Pareto, and bounded Pareto.

Uniform distribution (continuous):

A random variable uniformly distributed in $a \leq x \leq b$ has probability density function,

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & a \leq x \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

and a probability distribution function,

$$
F(x)=\left\{\begin{array}{cc}
0 & x<a \\
\frac{(x-a)}{(b-a)} & a \leq x<b \\
1 & x \geq b
\end{array}\right.
$$

The mean and variance are,

$$
\mu=\frac{1}{2}(a+b) \text { and } \sigma^{2}=\frac{1}{12}(b-a)^{2}
$$

To generate use genunifc. c from Christensen tools page or uniform() in CSIM.

Uniform distribution (discrete):

A random variable uniformly distributed in $a \leq k \leq b$ where $n=b-a+1$ has a probability mass function,

$$
f(k)=\left\{\begin{array}{cc}
1 / n & a \leq k \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

and a cumulative distribution function,

$$
F(k)=\left\{\begin{array}{cl}
0 & k<a \\
(\lfloor k\rfloor-a+1) / n & a \leq k \leq b \\
1 & k>b
\end{array}\right.
$$

The mean and variance are,

$$
\mu=\frac{1}{2}(a+b) \text { and } \sigma^{2}=\frac{1}{12}\left(n^{2}-1\right)
$$

To generate use genunifd. c from Christensen tools page or random_int() in CSIM.

Binomial distribution (discrete):

A random variable binomially distributed for n trials with probability p of success for each trial has probability mass function,

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad 0 \leq k \leq n
$$

The cumulative distribution function is messy.

The mean and variance are,

$$
\mu=n p \text { and } \sigma^{2}=n p(1-p)
$$

Note: Define $\lambda=n p$, then as n goes to infinity the binomial distribution tends to the Poisson distribution with rate λ.

To generate use genbin. c from Christensen tools page or binomial() in CSIM.

Poisson distribution (discrete):

A random variable Poisson distributed for a rate λ of arrivals has probability mass function,

$$
f(k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad k=0,1,2, \ldots
$$

The cumulative distribution function is messy.
The mean and variance are,

$$
\mu=\lambda \text { and } \sigma^{2}=\lambda
$$

Note: The distribution of time between arrivals in Poisson process is exponentially distributed with mean $1 / \lambda$.

To generate use genpois. c from Christensen tools page or poisson() in CSIM.

Exponential distribution (continuous):

A random variable exponentially distributed has density function,

$$
f(t)=\left\{\begin{array}{cc}
\lambda e^{-\lambda t} & t>0 \\
0 & t \leq 0
\end{array}\right.
$$

and distribution function,

$$
F(t)=\left\{\begin{array}{cc}
1-e^{-\lambda t} & x>0 \\
0 & x \leq 0
\end{array}\right.
$$

The mean and variance are,

$$
\mu=\frac{1}{\lambda} \text { and } \sigma^{2}=\frac{1}{\lambda^{2}}
$$

To generate use genexp.c from Christensen tools page or exponential() in CSIM.

Pareto distribution (continuous):

A random variable Pareto distributed with shape parameter α and minimum value k has density function,

$$
f(x)=\left\{\begin{array}{cc}
\frac{\alpha \cdot k^{\alpha}}{x^{\alpha+1}} & x \geq k \\
0 & x<k
\end{array}\right.
$$

and distribution function,
$F(x)=\left\{\begin{array}{cc}1-\left(\frac{k}{x}\right)^{\alpha} & x \geq k \\ 0 & x<k\end{array}\right.$
The mean and variance are,

$$
\mu=\frac{\alpha \cdot k}{\alpha-1} \text { and } \sigma^{2}=\frac{\alpha \cdot k^{2}}{\left((\alpha-1)^{2}(\alpha-2)\right)}
$$

Note: The Pareto distribution is heavy tailed. The mean is infinity for $\alpha<1$ and the variance is infinity for $\alpha<2$.
To generate use genpar1. c from Christensen tools page or pareto() in CSIM.

Bounded Pareto distribution (continuous):

A random variable X Bounded Pareto distributed with shape parameter α, minimum value k, and maximum value p has density function,

$$
f(x)=\left\{\begin{array}{cl}
0 & x<k \\
\frac{\alpha \cdot k^{\alpha}}{\left(1-\left(\frac{k}{p}\right)^{\alpha}\right)} x^{-\alpha-1} & k \leq x \leq p \\
0 & x>p
\end{array}\right.
$$

and distribution function,

$$
F(x)=\left\{\begin{array}{cl}
0 & x<k \\
\frac{p^{\alpha} \cdot\left(k^{\alpha}-x^{\alpha}\right)}{x^{\alpha} \cdot\left(k^{\alpha}-p^{\alpha}\right)} & k \leq x \leq p \\
0 & x>p
\end{array}\right.
$$

The mean and variance are,

$$
\mu=\frac{\alpha\left(k^{\alpha} \cdot p^{1-\alpha}-k\right)}{(\alpha-1)\left(\left(\frac{k}{p}\right)^{\alpha}-1\right)} \text { and } \sigma^{2}=\frac{\alpha \cdot\left(k^{\alpha} \cdot p^{2-\alpha}-k^{2}\right)}{(\alpha-2) \cdot\left(\left(\frac{k}{p}\right)^{\alpha}-1\right)}-\frac{\alpha^{2} \cdot\left(k-k^{\alpha} \cdot p^{1-\alpha}\right)^{2}}{(\alpha-1)^{2} \cdot\left(\left(\frac{k}{p}\right)^{\alpha}-1\right)^{2}}
$$

Note: The Bounded Pareto distribution is effectively heavy tailed, but has finite mean and variance.
To generate use genpar2. c from Christensen tools page (there is no built-in CSIM function to generate Bounded Pareto random variables).

