>>> Assignment \#4 for Simulation (CAP 4800) <<< Due on 06/13/13 in class

This assignment covers material from the fourth week of class lecture.

Problem \#1 (35 points)

Determine $X, T s, U, W, W q, L$, and $L q$ for the following single-server queueing system for the time period 0 to 150 seconds. Carefully show your work including all pertinent figures and formulas. Hint: Review your week \#4 reading (MacDougall, Chapter 1).

- Arrival \#1 at time $=10$ seconds with service time $=20$ seconds
- Arrival \#2 at time $=20$ seconds with service time $=30$ seconds
- Arrival \#3 at time $=35$ seconds with service time $=10$ seconds
- Arrival $\# 4$ at time $=80$ seconds with service time $=120$ seconds
- Arrival \#5 at time $=100$ seconds with service time $=20$ seconds

Problem \#2 (30 points)

Using the mm1.c simulation program we discussed in class (and that is available for download via the class website), simulate the following offered loads for an M/M/1 queue: $50 \%, 60 \%, 70 \%, 80 \%, 85 \%, 90 \%, 91 \%, 92 \%, \ldots, 98 \%$. Fix the service time to be 1.0. For each offered load collect results on the mean number of customers in the system (L). Use a SIM_TIME of 200000 seconds. Plot both the simulation results and theory results (based on the formula for L for $\mathrm{M} / \mathrm{M} / 1$) on one graph. Plot a graph of relative error for simulation to theory versus offered load on another graph. Comment on the relative error. Does it stay the same for all offered loads?

Problem \#3 (35 points)

Repeat problem \#2 for M/D/1 (of course, you can't use the formula for L for M/M/1, you must use the P-K formula correctly). You will need to modify mm1.c to model an M/D/1 queue. In addition to the two plots, also submit your modified mm1. c (perhaps call it md1. c?) source code. Comments on the relative error - is it greater or smaller than for the $\mathrm{M} / \mathrm{M} / 1$ simulation? Speculate on the "why".

