
KJC (as3_3sol.doc – 05/28/13) Page 1 of 9

>>> Assignment #3 for Simulation (CAP 4800) <<<

>>> SOLUTIONS <<<

This assignment covers material from the third week of class lecture.

Problem #1 (25 points)

A typical GET request to a web server requests an HTML page. This HTML page may have embedded images. Each
embedded image results in another GET to the server. So, for example, if a given page has two embedded images then there
will be two additional GET requests to the server for the images. Suppose that 937 web pages (HTML pages) were
characterized for number of embedded images. The below table shows what was observed (that is, 129 pages have 0
embedded images, 247 pages have 1 embedded image, and so on).

Number of embedded images Number of pages observed

0 129

1 247

2 112

3 332

4 117

Your task is to create a program that generates a simulated workload corresponding to the statistics in the above table. The
workload is a series of integer values corresponding to the number of embedded images in a given request. Using your
program, generate 1 million simulated requests and determine the mean. Compare the mean of the simulated workload to
the expected theoretical mean (which you should calculate in your program) based on the data in the above table. Your
program should output the pmf, CDF, and theoretical mean of your empirical distribution, and also the mean of generated
requests. Submit your source code and a screen shot of the execution. Hint: You may take the printer workload program we
discussed in class and modify it for this problem.

A screenshot of the execution is below and the source code is attached as as3_3_1sol.c.

KJC (as3_3sol.doc – 05/28/13) Page 2 of 9

Problem #2 (25 points)

Here is a C function for a random number generator. Describe how to evaluate an RNG for “goodness”. Evaluate the below
RNG.

//===
//= Superduper RNG for Simulation class (summer 2011) =
//===
double rand_superduper(void)
{
 const long a = 33312;
 const long m = 2147483647;
 const long q = 250001;
 const long r = 1111;
 static long x = 1;
 long x_new, x_div_q, x_mod_q;

 x_mod_q = x % q;
 x_div_q = x / q;
 x_new = a * x_mod_q;
 x_new = x_new - (r * x_div_q);
 if (x_new > 0) x = x_new;
 else x = ((-1) * x_new);

 return((double) x / m);
}

A good RNG should be unif(0, 1) and all values should be independent. We can plot a histogram to evaluate
unif(0, 1) and look for zero autocorrelation for independence. Using the above RNG to generate 1 million
samples and using hist.c and autoc.c we get:

This RNG is not very good – the values
are not unif(0, 1). The value are, however,
apparently independent.

KJC (as3_3sol.doc – 05/28/13) Page 3 of 9

Problem #3 (25 points)

Consider a disk drive that transfers data in micro-blocks of 5 bytes. There is a probability of bit error, p, for each block
transferred (that is, each bit has a probability of being in error of p). Bit errors are independent (that is, there is no
correlation between bit errors). What is the probability of a block having 0, 1, 2, or 3 bit errors? The Monte Carlo
simulation blockError.c (which can be found on the class source code page) models this system. Run the simulation
for p = 10-2. Submit a screenshot of the results. Also, analytically model this system and compare your analytical and
simulation results.

A screenshot of the program execution is:

This problem is a binomial distribution, so:

 kk pp
k

k

 1

40
bits] 40 inerror Pr[

where k = 0, 1, 2, and 3 for p = 0.01. Solving for the above (here using Mathcad, you can use the tool of
your choice including a calculator) we get

These values are easily within 1% of the
simulated values. So, the simulation and
analysis match, as expected.

KJC (as3_3sol.doc – 05/28/13) Page 4 of 9

Problem #4 (25 points)

Consider the same system of Problem #3. Modify blockError.c to model correlated bit errors as follows. If a given bit
is not in error, then the probability that the next bit is in error is p. If a given bit is in error, then the probability that the next
bit is in error is 0.5. Just the same as in Problem #3, for p = 10-2 determine the probability of a block having 0, 1, 2, or 3 bit
errors. This problem cannot (at least not easily) be modeled analytically. This is an example of a problem well suited for a
Monte Carlo simulation model. Submit your source code and a screenshot of the results. Discuss your results – compare
them to the results of Problem #3 and speculate on why the difference.

A screenshot of the execution is below and the source code is attached as as3_3_4sol.c.

The probability of 0 errors remains the same as for the independent case. This is not a surprise as only
when a bit error occurs do the correlation effects (which increase the probability of additional bit errors)
come into play. The probability of “few” bit errors (compare Pr[1 errors] for each case) is lower than for the
independent case. However, for “many” bit errors (compare Pr[2 errors] for each case) the correlated case
has higher probability (than the independent case). That is, the correlation or bit errors pushes more mass
into the tail of the distribution.

KJC (as3_3sol.doc – 05/28/13) Page 5 of 9

//=== file = as3_3_1sol.c =====
//= Program to generate simulated web accesses (# of images per access) =
//===
//= Build: bcc32 as3_3_1sol.c =
//=---=
//= Execute: as3_3_1sol =
//===
#include <stdio.h> // Needed for printf()
#include <stdlib.h> // Needed for rand() and RAND_MAX

//----- Constants ---
#define NUM_MEAS 5 // Number of measurements in "bins"
#define NUM_SAMPLES 1000000 // Number of Web access samples to simulate

//----- Globals ---
struct web_access // Structure for holding web access sample
{
 int num_images; // ** Number of images for this Web access
 double ratio_observed; // ** Observed ratio (0 to 1) for this sample
};

// Observed # of images per Web access (sum of ratios must equal 1.0)
struct web_access size[NUM_MEAS] = {{0, 129.0 / 937.0}, {1, 247.0 / 937.0},
 {2, 112.0 / 937.0}, {3, 332.0 / 937.0},
 {4, 117.0 / 937.0}
 };

//===== Main program ==
void main(void)
{
 double dist_func[NUM_MEAS]; // The CDF for the Web access samples
 int bin_num; // Measurement "bin" number
 int image_count; // Image count for this sample
 double mean_theory; // Mean image count (theory)
 double mean_sample; // Mean image count (sample)
 double z; // Uniform random number from 0 to 1
 int i; // Loop counter

 // Output the pmf for the observed measurements
 printf("The pmf: \n");
 for (i=0; i<NUM_MEAS; i++)
 printf(" f(%d) = %f \n", size[i].num_images, size[i].ratio_observed);

 // Build and output the CDF for the observed measurements
 printf("\nThe CDF: \n");
 dist_func[0] = size[0].ratio_observed;
 printf(" F(%d) = %f \n", size[0].num_images, dist_func[0]);
 for (i=1; i<NUM_MEAS; i++)
 {
 dist_func[i] = dist_func[i-1] + size[i].ratio_observed;
 printf(" F(%d) = %f \n", size[i].num_images, dist_func[i]);
 }

KJC (as3_3sol.doc – 05/28/13) Page 6 of 9

 // Calculate and output the theoretical mean
 mean_theory = 0.0;
 for (i=1; i<NUM_MEAS; i++)
 mean_theory = mean_theory + (size[i].ratio_observed * size[i].num_images);
 printf("\nTheoretical mean = %f images per access \n", mean_theory);

 // Generate NUM_SAMPLES simulated Web accesses
 mean_sample = 0.0;
 for (i=0; i<NUM_SAMPLES; i++)
 {
 // Pull a uniform RV (0 < z < 1)
 do
 {
 z = ((double) rand() / RAND_MAX);
 }
 while ((z == 0) || (z == 1));

 // Map z to a bin number
 for (bin_num=0; bin_num<NUM_MEAS; bin_num++)
 if (z < dist_func[bin_num]) break;

 // Get image_count from selected bin
 image_count = size[bin_num].num_images;

 // Running sum for the mean_count
 mean_sample = mean_sample + ((double) image_count / NUM_SAMPLES);
 }

 // Output the mean image count
 printf("\nSample mean for %d samples = %f images per access \n",
 NUM_SAMPLES, mean_sample);
}

KJC (as3_3sol.doc – 05/28/13) Page 7 of 9

//=== file = as3_3_4sol.c =====
//= A Monte Carlo simulation of dedependent bit errors in a block =
//= - For Assignment #3, problem #4 =
//===
//= Notes: See problem #4 in assignment #3 =
//=---=
//= Build: bcc32 as3_3_4sol.c =
//=---=
//= Execute: as3_3_4sol =
//===
//----- Include files ---
#include <stdio.h> // Needed for printf()

//----- Constants ---
#define FALSE 0 // Boolean false
#define TRUE 1 // Boolean true
#define P_ERROR 0.01 // Probability of a bit error
#define BLOCK_LEN 40 // Number of bits in a block
#define NUM_TRIALS 10000000 // Number of trials to run

//----- Function prototypes ---
double rand_val(int seed); // RNG

//===== Main program ==
int main(void)
{
 int error_count; // Error count for a message
 int error[BLOCK_LEN + 1]; // Error count vector
 int lastBitInError; // Flag for last bit in error
 int i, j; // Loop counters

 // Initialization error vector to zero
 for (i=0; i<BLOCK_LEN; i++)
 error[i] = 0;

 // Seed the RNG
 rand_val(1);

 // Main simulation loop
 printf("Simulation is running for %d trials... \n", NUM_TRIALS);
 lastBitInError = FALSE;
 for (i=0; i<NUM_TRIALS; i++)
 {
 error_count = 0;
 for (j=0; j<BLOCK_LEN; j++)
 {
 // If last bit was not in error, then Pr[bit error] = p
 if (lastBitInError == FALSE)
 {
 if (rand_val(0) < P_ERROR)
 {
 error_count++;
 lastBitInError = TRUE;
 }

KJC (as3_3sol.doc – 05/28/13) Page 8 of 9

 else
 lastBitInError = FALSE;
 }
 // If last bit was in error, then Pr[bit error] = 0.5
 else if (lastBitInError == TRUE)
 {
 if (rand_val(0) < 0.5)
 {
 error_count++;
 lastBitInError = TRUE;
 }
 else
 lastBitInError = FALSE;
 }
 }

 // Increment appropriate element in error vector
 error[error_count]++;
 }

 // Determine and output probabilities of interest
 printf(" Pr[0 errors] = %f \n", (double) error[0] / NUM_TRIALS);
 printf(" Pr[1 errors] = %f \n", (double) error[1] / NUM_TRIALS);
 printf(" Pr[2 errors] = %f \n", (double) error[2] / NUM_TRIALS);
 printf(" Pr[3 errors] = %f \n", (double) error[3] / NUM_TRIALS);

 return(0);
}

//===
//= Multiplicative LCG for generating uniform(0.0, 1.0) random numbers =
//= - x_n = 7^5*x_(n-1)mod(2^31 - 1) =
//= - With x seeded to 1 the 10000th x value should be 1043618065 =
//= - From R. Jain, "The Art of Computer Systems Performance Analysis," =
//= John Wiley & Sons, 1991. (Page 443, Figure 26.2) =
//= - Use seed == 0 to generate random value, use seed > 0 for seeding =
//===
double rand_val(int seed)
{
 const long a = 16807; // Multiplier
 const long m = 2147483647; // Modulus
 const long q = 127773; // m div a
 const long r = 2836; // m mod a
 static long x; // Random int value (this is the seed)
 long x_div_q; // x divided by q
 long x_mod_q; // x modulo q
 long x_new; // New x value

 // Seed the RNG
 if (seed > 0) x = seed;

 // RNG using integer arithmetic
 x_div_q = x / q;
 x_mod_q = x % q;
 x_new = (a * x_mod_q) - (r * x_div_q);
 if (x_new > 0)

KJC (as3_3sol.doc – 05/28/13) Page 9 of 9

 x = x_new;
 else
 x = x_new + m;

 // Return a random value between 0.0 and 1.0
 return((double) x / m);
}

