//=========================================================== file = mm1.c ===== //= A simple "straight C" M/M/1 queue simulation = //============================================================================== //= Notes: 1) This program is adapted from Figure 1.6 in Simulating = //= Computer Systems, Techniqyes and Tools by M. H. MacDougall = //= (1987). = //= 2) The values of SIM_TIME, ARR_TIME, and SERV_TIME need to be set. = //=----------------------------------------------------------------------------= //= Build: gcc mm1.c -lm, bcc32 mm1.c, cl mm1.c = //=----------------------------------------------------------------------------= //= Execute: mm1 = //=----------------------------------------------------------------------------= //= History: KJC (03/09/99) - Genesis = //============================================================================== //----- Include files ---------------------------------------------------------- #include // Needed for printf() #include // Needed for exit() and rand() #include // Needed for log() //----- Constants -------------------------------------------------------------- #define SIM_TIME 1.0e6 // Simulation time #define ARR_TIME 1.25 // Mean time between arrivals #define SERV_TIME 1.00 // Mean service time //----- Function prototypes ---------------------------------------------------- double expntl(double x); // Generate exponential RV with mean x //===== Main program =========================================================== void main(void) { double end_time = SIM_TIME; // Total time to simulate double Ta = ARR_TIME; // Mean time between arrivals double Ts = SERV_TIME; // Mean service time double time = 0.0; // Simulation time double t1 = 0.0; // Time for next event #1 (arrival) double t2 = SIM_TIME; // Time for next event #2 (departure) unsigned int n = 0; // Number of customers in the system unsigned int c = 0; // Number of service completions double b = 0.0; // Total busy time double s = 0.0; // Area of number of customers in system double tn = time; // Variable for "last event time" double tb; // Variable for "last start of busy time" double x; // Throughput double u; // Utilization double l; // Mean number in the system double w; // Mean residence time // Main simulation loop while (time < end_time) { if (t1 < t2) // *** Event #1 (arrival) *** { time = t1; s = s + n * (time - tn); // Update area under "s" curve n++; tn = time; // tn = "last event time" for next event t1 = time + expntl(Ta); if (n == 1) { tb = time; // Set "last start of busy time" t2 = time + expntl(Ts); } } else // *** Event #2 (departure) *** { time = t2; s = s + n * (time - tn); // Update area under "s" curve n--; tn = time; // tn = "last event time" for next event c++; // Increment number of completions if (n > 0) t2 = time + expntl(Ts); else { t2 = SIM_TIME; b = b + time - tb; // Update busy time sum if empty } } } // Compute outputs x = c / time; // Compute throughput rate u = b / time; // Compute server utilization l = s / time; // Compute mean number in system w = l / x; // Compute mean residence or system time // Output results printf("=============================================================== \n"); printf("= *** Results from M/M/1 simulation *** = \n"); printf("=============================================================== \n"); printf("= Total simulated time = %3.4f sec \n", end_time); printf("=============================================================== \n"); printf("= INPUTS: \n"); printf("= Mean time between arrivals = %f sec \n", Ta); printf("= Mean service time = %f sec \n", Ts); printf("=============================================================== \n"); printf("= OUTPUTS: \n"); printf("= Number of completions = %ld cust \n", c); printf("= Throughput rate = %f cust/sec \n", x); printf("= Server utilization = %f %% \n", 100.0 * u); printf("= Mean number in system = %f cust \n", l); printf("= Mean residence time = %f sec \n", w); printf("=============================================================== \n"); } //============================================================================== //= Function to generate exponentially distributed RVs using inverse method = //= - Input: x (mean value of distribution) = //= - Output: Returns with exponential RV = //============================================================================== double expntl(double x) { double z; // Uniform random number from 0 to 1 // Pull a uniform RV (0 < z < 1) do { z = ((double) rand() / RAND_MAX); } while ((z == 0) || (z == 1)); return(-x * log(z)); }