

Performance of Packet-to-Cell Segmentation
Schemes in Input Buffered Packet Switches*

*This material is based upon work supported by the National Science Foundation under Grant No. 9875177.

K. Christensen and K. Yoshigoe
Computer Science and Engineering

University of South Florida
Tampa, FL 33620

A. Roginsky
IBM Corporation
P.O. Box 12195

Research Triangle Park, NC 27709

N. Gunther
Performance Dynamics Company
4061 East Castro Blvd., Suite 110

Castro Valley, CA 94552

Abstract- Most input buffered packet switches internally

segment variable-length packets into fixed-length cells. The last
cell in a segmented packet will contain overhead bytes if the
packet length is not evenly divisible by the cell length. Switch
speed-up is used to compensate for this overhead. In this paper,
we develop an analytical model of a single-server queue where
an input stream of packets is segmented into cells for service.
Analytical models are developed for M/M/1, M/H2/1, and M/E2/1
queues with a discretized (or quantized) service time. These
models and simulation using real packet traces are used to
evaluate the effect of speed-up on mean queue length. We
propose and evaluate a new method of segmenting a packet
trailer and subsequent packet header into a single cell. This cell
merging method reduces the required speed-up. No changes to
switch-matrix scheduling algorithms are needed. Simulation
with a packet trace shows a reduction in the needed speed-up for
an iSLIP scheduled input buffered switch.

I. INTRODUCTION

Packet switching is central to IP routing and Ethernet
switching. Packets are typically variable in length (e.g.,
ranging from 64 to 1518 bytes for Ethernet). To
accommodate very high-speed links, input buffered
architectures are often used (e.g., the Cisco 12000 GSR [1]).
These input buffered switches can use a crossbar as the switch
fabric. Input buffered switches require a memory speed
proportional to link speed. Output buffered switches require
memory speed proportional to N times link speed (for N
ports) making them infeasible for use with high-speed links
and/or large numbers of ports. Input buffered switches
overcome head-of-line blocking by employing virtual output
queueing (VOQ) in each input port. A VOQ input buffered
switch contains NxN VOQs for N ports. Fig. 1 shows a VOQ
switch with each input port containing a packet classifier to
determine the destination output port, packet-to-cell
segmenter, VOQs, and a scheduler. VOQ switches use an
iterative matching algorithm to match input ports with output
ports to schedule the switch matrix. Iterative matching
algorithms for VOQ crossbar switches include iSLIP [2] and
FIRM [3]. These algorithms inherently require the use of
internal fixed-length cells. This is because the crossbar is
scheduled in cycles, one cycle for each set of cells forwarded
from matched input ports to output ports. Thus, input
buffered switches segment packets into cells, internally switch

the cells, and then reassemble the cells into packets in
reassembly buffers at the output ports. “Cell train”
approaches to reducing packet-level delays have been studied
(e.g., [4]).

Not all (very likely, only very few) packets have a length
that is an even multiple of the internal cell length. Thus, the
last cell of a segmented packet will often contain padding
bytes. To compensate for internal forwarding of overhead
bytes, the switch buffers and fabric must operate faster than
link speed. That is, an internal speed-up is needed to achieve
queue stability for high offered loads. In the worst case of S
byte cells and contiguous arrivals of 1+S byte packets, the
speed-up needs to be almost a factor of 2 for S2 bytes of cell
data needed to switch 1+S bytes of packet data. Speed-up is
impossible when the memory and logic speeds of the switch
technology are already close to being exceeded by link
speeds. In any case, the overhead from speed-up adds cost to
a switch implementation. No existing work quantitatively
addresses how much speed-up is needed. New methods for
reducing speed-up need to be investigated. We address these
open problems.

This paper is organized as follows. Section II of this
paper develops fundamental analytical models and contains
numerical results from these models. Section III contains a
simulation evaluation using real packet traces. Section IV
proposes and evaluates a method of consecutive packets in
cells to reduce overhead. Section V is a summary. An
appendix contains proofs.

Fig. 1. VOQ switch showing packet-to-cell segmenter

Control flow

Classifier

Crossbar

Scheduler

Output 1 Output 2

1, 1
1, 2

Input 1

2, 1
2, 2

Input 2

1,1 1,2

2,1 2,2

VOQs

VOQs

Segmenter

Fig. 1. VOQ switch showing packet-to-cell segmenter

Control flow

Classifier

Crossbar

Scheduler

Output 1 Output 2

1, 1
1, 2

Input 1

2, 1
2, 2

Input 2

1,1 1,2

2,1 2,2

VOQs

VOQs

Segmenter

II. MODELS OF QUANTIZED SERVICE TIME QUEUES

We assume that packet lengths are randomly distributed
and their distribution is known. For a given packet of length
L bytes and a cell of size S bytes, ()SLceil cells are needed
to segment the packet where ceil is the standard ceiling
function. The last packet in the sequence, or “train”, of cells
will have rS − padding or overhead bytes where

()SLr ,Rem= when L is not a multiple of S, Sr =
otherwise. This results in an internal packet length (in cells)
of rSL −+ bytes. Thus, an internal speed-up factor of

LrS /)(1 −+ is needed to switch the packet at link speed.
For a given distribution of packet lengths, we address how
this discretization (or quantization) caused by segmentation
into cells changes the mean and variance of the number of
bytes to be transported. This changes the service time of a
queue modeling the input buffer of a packet switch that
segments packets to cells as described. We model queueing
delay of three classical queues given a ceiling of service time.

A. Ceiling of Well Known Distributions

Let X be an arbitrary random variable for which we know
()XE and ()XVar . Let Y be the integer-valued random

variable that is the ceiling of X and let XYZ −= . If X has a
wide smooth distribution and is not concentrated near a
particular integer or set of integers, we can assume that Y and
Z are almost independent and the distribution of Z on ()1,0 is
roughly uniform. We have () 21=ZE and () 121=ZVar .
We have () () () () () 21+=+=+= XEZEXEZXEYE and

() () () () () 121Var +=+=−= YZVarYVarZYVarXVar and
hence () () 121−= XVarYVar .

For an exponentially distributed random variable X with
() x

X exf µµ −= , let ()XY ceil= . Then Y is geometrically
distributed with:

 () µ−−
=

e
YE

1
1 and (1)

 () 2)1(µ

µ

−

−

−
=

e
eYVar . (2)

The proof of this is in the appendix. As expected,

2
11

1
1lim

0
=

−

− −→ µµµ e
 and (3)

 () 12
11

1
lim 220

−=

−

− −

−

→ µµ

µ

µ e
e . (4)

Let H2 denote a two-stage hyperexponentially distributed
random variable X with () xµxµ

X eµαeµαxf 21
2211

−− += and
0>x , 0, 21 ≥αα , and 121 =+ αα , let ()XY ceil= . Then,

()
21 11

21
µµ e

α
e
αYE −− −

+
−

= and (5)

() ()()2
2221)1(

1
)1(

1
2

2

1

1

YE
e
eα

e
eαYVar µ

µ

µ

µ

−
−
++

−
+= −

−

−

−

. (6)

The proof of this is in the appendix.

Let E2 denote a two-stage Erlang distributed random
variable X with xxexf µµ −= 2)((i.e., both service rates are
the same). Then Y has,

() 2)1(
1)1(

µ

µµ
−

−

−
+−=

e
eYE and (7)

() 4

223

)1(
])2()1()1[(

µ

µµµ µµµ
−

−−−

−
+−−−+=

e
eeeYVar . (8)

The proof of this is in the appendix. When)(YVar is
evaluated numerically, we can see that it is usually greater
than the value of)(XVar , which is equal to 2/2 µ . The
reason for this is that the Erlang distribution does not satisfy
the heuristic assumptions made in Section IIA. It has a peak,
which makes the discrete picture more complicated.

B. M/G/1 Analysis

The quantization described in Section IIA corresponds to
taking the ceiling function of the continuous-valued service
time. We introduce a superscript notation ∆ for these
quantized service times so that the quantized version of an
M/M/1 queue is denoted /1M/M∆ , which is also equivalent
to M/Geo/1 with mean service time () 11 −−− µe defined by eq.
(1). Since ()YE and ()YVar are continuous functions, the
mean number of customers in the system ()NE can be
determined from the standard Pollaczek-Khintchine (P-K)
M/G/1 formula [5]:

()
()
()

+

−
+=

YE
YVarNE 2

2

1
12

)(
ρ

ρρ . (9)

where ()YEλρ = is the quantized load. For /1M/M∆ eq. (9)
reduces to:

−+
−= − 1

2
2

)(
λ

λλ
µe

NE (10)

with µ the mean service rate of the underlying exponential
distribution used to calculate the quantized service times. We
have also solved /1M/H2

∆ and /1M/E2
∆ queues for ()NE , but

those formulas are far more complex than eq. (10) and are not
shown here. Moreover, beyond the special cases discussed in
Section IIA, we do not expect an arbitrary response time
distribution to possess an analytic quantized form, so a more
general approach is needed.

C. General Quantization Algorithm

Let ()tf be a continuous service time probability density,
then the following algorithm can be applied either
algebraically or numerically:

1. Determine the cumulative distribution function

() ()∫=
t

dxxftF
0

 (11)

which corresponds to the total area or probability.

2. Construct the continuous difference function:

 () () ()tFtFtF −+= 1ˆ . (12)

which corresponds to the sub-area in each time-domain
interval. The procedure, so far, is the same as that used
for proofs in the Appendix. If ()tF̂ does not possess a
closed analytic form, numerical techniques can be
employed.

3. Convolve eq. (12) with the Dirac comb III [9] to produce:

 () () ()∑
∞

=

−−=⋅
0

1ˆˆ
k

ktkFIIItF δ , (13)

where ()⋅δ is the Dirac delta function [7] chosen to
conform to the conventions used in the Appendix.
Selecting integer sampling points with 1=∆k
corresponds to applying the ceiling function of Section
IIA (see Fig. 2). However, eq. (13) is guaranteed to be the
correct discrete representation for any arbitrary continuous
service time density ()tf .

4. The corresponding mean and variance of the quantized
distribution are computed from:

 () () ()1ˆ
1

−−=∑
=

ktkFkYE
N

k

δ and (14)

 () ()() () ()∑
=

Γ −−−=
N

k

ktkFYEkYVar
1

2 1ˆ δ . (15)

As an example applicaton of this quantization algorithm,
consider an /1M/Γ queue with Gamma probability density
defined by:

() ()
β

α

α

αβ
βα tettf −

−

Γ
=

1

,, (16)

where the gamma function () !1 αα =+Γ is a generalization
of the factorial function [7]. The parameters α and β
respectively determine the shape and the scale of eq. (16),
which makes it attractive for modeling a variety of empirical
service time distributions [8]. If 1=α , eq. (16) reduces to
the exponential density function discussed in Section IIA.
Unfortunately, this inherent modeling flexibility comes with
the limitation that no analytic form exists for the quantized
distribution () IIItF ⋅Γ

ˆ in eq. (13). We therefore proceed
numerically.

Using the summary network statistics in Table 1, we have
() 82.32 == smα and 46.0== αβ m . Substituting these

values into eqs. (14) and (15) produces () 24.2=Γ YE and
() 89.0=Γ YVar , respectively and eq. (9) gives the mean

queue length of /1M/ ∆Γ (e.g., () 67.5=Γ NE at an offered
load of 90.0=ρ (compare this with Fig. 3)).

Eq. (13) can also be used to construct the appropriate
queue-theoretic transforms for the quantized service time
distribution from the Laplace transform:

 ()[] () ()
∫
∞

−−⋅=−
0

1 ˆ1 dteIIItFzW tz λλ . (17)

For the /1M/M∆ queue:

()[]
() ()

() µλ

µλ

λ
ee
eezW z

z

−
−=− −−

−−

1

1 11 (18)

and the corresponding P-K transform [5] of the queue length
distribution:

 () ()() ()[]
()[] zzW

zWzzg
−−

−−−=
λ

λρ
1

111 (19)

reduces to:

 () () () ()[]
() () () µλµλ

µλ λ
zeeze

eezzg zz

z

−−−
−−−= −−+−−

−−

11

1

1
111 . (20)

All the moments of the queue length distribution can be found
by taking successive derivatives of ()zg [5]. The first
moment is the mean queue length:

 () () ()
() µ

µ

λ
λλ

e
e

dz
zdgNE

z −−
−=≡

= 122
2

1

, (21)

which is equivalent to eq. (10). The inverse of ()zg (if it
exists) produces the queue length probability distribution.

TABLE I
SUMMARY NETWORK STATISTICS (from [8])

Statistic Value

 Sample mean (m) 1.74
 Sample standard deviation (s) 0.89
 Estimated shape (α) 3.82
 Estimated scale (β) 0.46

Fig 2. Dirac comb for F(t) (exponential with µ = 0.5)^

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 3 4 5 6 7 8 9 10

Discrete time (k)

Pr
ob

ab
ili

ty

^ = F (t)
 = Comb (III)
 = Convolution

Fig 2. Dirac comb for F(t) (exponential with µ = 0.5)^Fig 2. Dirac comb for F(t) (exponential with µ = 0.5)^

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 3 4 5 6 7 8 9 10

Discrete time (k)

Pr
ob

ab
ili

ty

^ = F (t)
 = Comb (III)
 = Convolution

TABLE II
PACKET TRACE SUMMARY STATISTICS

 Packet interarrival time Packet length

Mean 66.50 µs 764 bytes
Standard deviation 68.20 µs 672 bytes
CoV 1.03 0.88
Minimum 0.95 µs 64 bytes
Maximum 2385.97 µs 1518 bytes
99% 338.08 µs 1518 bytes
Shape of distribution Decreasing Bimodal

D. Application of Models to Packet-to-Cell Segmenting

We now apply the /1M/M∆ model to predict ()NE in
packets given L, S, and a utilization ρ. The utilization, ρ, is
based on the arriving rate of packets (in bits per second)
divided by the link rate (in bits per second). Packet arrivals
are Poisson, and packet lengths are exponentially distributed.
These assumptions are very restrictive and unrealistic of real
packet traffic. However, even with these restrictive
assumptions we can observe the general behavior of
segmentation and speed-up. In the next section, these
restrictive assumptions are removed in a simulation study.

For a given L and S, the mean service time in cell time
units is SLTs = . For a given link utilization based on
packets, ρ, the mean interarrival time is ρsa TT = . Then,
the mean arrival rate aTλ 1= and mean service rate

sTµ 1= . For the M/M/1, µλρ = and mean number of
packets in the system () ()ρρ −= 1NE . For the /1M/M∆
the utilization for quantized service time is,

() ()µeλYEλρ −−=⋅=′ 1 . The speed-up, σ, needed to
achieve carried load equal to offered load (i.e., stability for all
offered loads up to 1=ρ) is

() ()µeµYEµρρσ −−=⋅=′= 1 . Fig. 3 shows the numerical
results for ()NE for a range of 0.1 , ,51.0 ,50.0 l=ρ and

=L 100, 500, and 1000 bytes for 64=S bytes. To achieve
stability, the speed-up required is 354.1=σ for 100=L
bytes, 065.1=σ for 500=L bytes, and 032.1=σ for

1000=L bytes. These numerical results show that without
speed-up, ()NE increases rapidly at high offered loads and
that the smaller L is, the greater is the effect of segmentation
on ()NE . The analytical results in Fig. 3 have been validated
with a simulation model. This model was then used in the
next section for more realistic traffic models.

III. SIMULATION OF ISLIP WITH PACKET SEGMENTATION

We evaluated the effects of discretization on a real
network traffic using a simulation model with a packet trace
as input. We used a previously built and validated iSLIP
simulation model [6] for this simulation evaluation. Over 60
million IP packets were collected from the University of
South Florida (USF) Internet2 OC-3 (155-Mbps) link. The
packet trace collected packet interarrival times, packet length,
and packet headers. Table 2 shows the summary of the
packet trace. The mean packet length was 764 bytes. The

most common packet length was 1518 bytes (31.4% of all
packets) followed by 64 bytes (28.7%), 1438 bytes (7.7%), 70
bytes (2.7%), and 594 bytes (1.4%). All other packet length
occurs at less than 1%. The trace file of 60 million packets
was split into 16 smaller files, each with the same number of
packets. Each of these smaller files was then input to a port
in the modeled 16-port iSLIP switch. The destination output
port was assigned using a modulo-16 function of the packet
IP destination address. Output port utilization of switch is not
uniform for real traffic. In our experiment, we refer
utilization to be the maximum offered load among all 16
ports. Service time (i.e., simulated line speed) is controlled to
achieve a desired utilization. For all experiments, control
variables are offered load and speed-up, and the response
variable is mean queue length. An internal cell size of 64
bytes was used. Two experiments were run:

Experiment #1 – For no speedup, 1.05x and 1.1x speedups
with segmentation and cell padding, mean queue length is
measured for utilization ranging from 50% to 99%.

Experiment #2 – The minimum speedup needed for 99%
utilization is systematically identified. A queue length of
1000 or greater is considered a sign of instability.

Fig. 4 shows the results for the experiment #1. It can be seen
that no speedup and the 1.05x speedup cases become unstable
above 93% and 97% utilization, respectively. The 1.1x
speedup case can achieve stability for the entire range of
utilizations. For experiment #2, it was found that the
minimum speed-up needed for 99% utilization was 1.06x.

IV. PACKET-TO-CELL SEGMENTATION WITH CELL MERGING

We propose a new method of segmenting packets into
cells that applies to input buffered switches and reduces the
amount of speed-up needed to achieve stability. When a
packet is segmented into cells (i.e., in the segmenters shown
in Fig. 1) the last cell of a packet may be a partially filled cell.
Instead of queueing this partial cell (with padding bytes) to
the VOQ, it is held back to wait for the next arriving packet.
The next arriving packet then starts its segmentation with the
held back cell from the previous packet. That is, the header
bytes of the arriving packet are merged with the trailer bytes
from the previous packet. We call this cell merging. A finite
state machine (FSM) for cell merging is shown in Fig. 5. The
EMPTY state occurs when there is no held back cell and the
segmenter is idle. An arriving packet transitions (T0) the
FSM to the SEGMENTING state where the packet is

Fig 3. Numerical results for M/M /1 for various values of L

0
5

10
15
20
25
30
35
40
45
50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

L=100 bytes L=500 bytes

L=1000 bytes

Cell size, S = 64 bytes

Fig 3. Numerical results for M/M /1 for various values of L

0
5

10
15
20
25
30
35
40
45
50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

L=100 bytes L=500 bytes

L=1000 bytes

Cell size, S = 64 bytes

segmented into cells and the cells queued in the VOQ. If the
last cell in a packet is a partial cell it is held back and the
FSM transitions (T1) to the PARTIAL state (otherwise, the
transition is to the EMPTY state (T2)). In the PARTIAL
state, the segmenter is idle and waiting for an arriving packet
to transition (T3) back to the SEGMENTING state. In the
PARTIAL state a cell merging timer is started when the VOQ
is empty (e.g., all cells segemented and queued have been
forwarded). If this timer expires before an arriving packet,
then the held back cell is queued with padding bytes and
transition (T4) is to the EMPTY state. The purpose of the
timer is to prevent a packet from being unfairly starved if
there are no subsequent arrivals for a long period of time.

A. Simulation Evaluation of Cell Merging

Experiments #1 and #2 of Section III were repeated for
the cell merging mechanism with the cell merging timer
expiration value set to 10 cell times. Fig. 6 shows the mean
queue of cell merging compared with the results of Fig. 4 (no
cell merging). The packet merging mechanism with no
speedup becomes unstable above 95%. The cell merging
mechanism with a speedup of 1.05x and 1.1x achieved
stability for all offered load measured. Cell merging results in
a lower mean queueing delay for high utilizations. From
experiment #2 it was found that the minimum speedup needed
was 1.04x. Thus, cell merging required 2% less speedup than
packet-to-cell segmentation without cell merging. We
experimented with cell merging timer values. A large (100 or
1000 cell times) timer value results in high queueing delays at
low utilization and no benefit at high utilizations (where a
time-out would rarely occur due to frequently arriving
packets). We found that a value of 10 cells times works well.

For a 10-Gbps link, 10 cell times corresponds to a very small
512 ns.

V. SUMMARY AND FUTURE WORK

This paper makes two contributions. The first is in
discovering the application of quantized queues to modeling
of packets-to-cells segmentation for packet switches. This is
the first work to analytically show the speed-up value needed
for a packet-to-cell segmentation. We have formally derived
and proved expressions for mean queue length for /1M/M∆ ,

/1M/H2
∆ , and /1M/E2

∆ . We have also described a general
quantization procedure. Our second contribution is to
evaluate the speed-up penalty of packets-to-cells
segmentation and propose an improved method of
segmentation. Our proposed cell merging method reduces the
required speed-up in an input buffered switch. This is
significant because increases in link speed continue to
outpace improvements in memory speed. We cannot afford
up to a 2x speed-up just for handling the variable length
nature of IP packets in the Internet. Even a small speed-up
adds cost to high-speed packet switches.

We believe that quantized queues are an area of much
future work in both theory and application. Future work
includes investigating inverting the P-K transform to
determine mean queue length distributions. Future work also
includes investigating additional practical methods to further
reduce the required speed-up in VOQ switches.

ACKNOWLEDGMENT

The authors thank the anonymous referees for their helpful
comments that have improved the quality of this paper. The
authors also thank Bjarne Helvik of NTNU for his discussion
on the properties of the distribution of Z in Section IIA

REFERENCES

[1] Cisco 12000 Gigabit Switch Router [Online]. Available:
http://www.cisco.com.

[2] N. McKeown, “The iSLIP Scheduling Algorithm for Input-
Queued Switches,” IEEE/ACM Trans. Networking, vol. 7, no.
2, Apr. 1999, pp. 188-201.

[3] D. Serpanos and P. Antoniadis, “FIRM: A Class of Distributed
Scheduling Algorithms for High-Speed ATM Switches with
Multiple Input Queues,” Proc. IEEE INFOCOM, Mar. 2000,
pp. 548-55.

Fig 6. Simulation results for experiment #1 with cell merging

0

25

50

75

100

125

150

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

Merging 1.05x

Merging 1.0x

Merging 1.1x

= Fig. 3 results

Fig 6. Simulation results for experiment #1 with cell merging

0

25

50

75

100

125

150

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

Merging 1.05x

Merging 1.0x

Merging 1.1x

= Fig. 3 results

Fig. 5. FSM for cell merging

EMPTY SEGMENTING PARTIAL

T0 packet arrival
T1 last cell is partial

last cell is full T2
packet arrival T3

cell merging timer expires T4

Fig. 5. FSM for cell merging

EMPTY SEGMENTING PARTIAL

T0 packet arrival
T1 last cell is partial

last cell is full T2
packet arrival T3

cell merging timer expires T4

Fig 4. Simulation results for experiment #1

0

25

50

75

100

125

150

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

Padding 1.1x

Padding 1.0x

Padding 1.05x

Fig 4. Simulation results for experiment #1

0

25

50

75

100

125

150

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization (ρ)

M
ea

n
no

. o
f p

ac
ke

ts
 E

(N
)

Padding 1.1x

Padding 1.0x

Padding 1.05x

[4] M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri,
“Packet-Mode Scheduling in Input-Queued Cell-Based
Switch,” IEEE/ACM Trans. Networking, vol. 10, no. 5, Oct.
2002, pp. 666-77.

[5] L. Kleinrock, Queueing Systems, Volume 1: Theory, New
York: John Wiley & Sons, 1975.

[6] K. Yoshigoe and K. Christensen, “An Evolution to Crossbar
Switches with Buffered Cross Points,” IEEE Network, vol. 7,
no. 5, Sept.-Oct. 2003, pp. 48-56.

[7] M. Abramowitz and A. Stegun, Handbook of Mathematical
Functions, New York: Dover Press, 1970.

[8] N. Gunther, The Practical Performance Analyst, New York:
McGraw-Hill, 1998.

[9] A. Oppenheim, A Willsky, and I. Young, Signals and Systems,
New Jersey: Prentice-Hall, 1983.

APPENDIX

In the appendix we derive formulas for the mean and variance
of the ceiling of exponentially, hyperexponentially, and two-
stage Erlang distributed random variables. That is, proofs are
given for eq. (1) and (2) for exponential, eq. (5) and (6) for
hyperexponential, and eq. (7) and (8) for two-stage Erlang.

Proof of eq. (1) and (2): For any 1≥k we compute

 () () =≤<−== kXkPkYP 1

 () () () ())1(111 −−− −−−=−− kk
XX eekFkF λλ . (A1)

We can rewrite this () ()λλ −−− −== eekYP k 1)1(. Let
1−= YZ . Then () () ()λλ −− −=+=== eekYPkZP k 11 .

From this it follows that Z has a geometric distribution, that
is, () pqkZP k== , 1=+ qp , with parameters p, q, where

λ−= eq and λ−−= ep 1 . It is known that the mean of Z is
equal to pq and the variance of Z is equal to 2/ pq . Hence,
we have

 () () λλ

λ

−−

−

−
=+

−
=+=

ee
eZEYE

1
11

1
1 and (A2)

 () () ()21 λ

λ

−

−

−
==

e
eZVarYVar , (A3)

which are equations (1) and (2), respectively. End of proof.

Proof of eq. (5) and (6): For convenience, we will define
() xexf 1

11
λλ −= and () xexf 2

22
λλ −= , so that

() () ()xfxfxf 2211 αα += . Let us introduce two random
variables 1X and 2X , such that 1X has the pdf 1f and 2X
has the pdf 2f . (We are not assuming that these two random
variables are independent and are not implying that

21 XXX +=). We will also denote ()11 ceil XY = and
()22 ceil XY = . For any 1≥k , we compute

 () () () ==≤<−== ∫ −

k

k
dxxfkXkPkYP

1
1

 () () =+ ∫∫ −−
dxxfdxxf

k

k

k

k

1 22

1 11 αα

 () () =≤<−+≤<− kXkPkXkP 2211 11 αα

() ().2211 kYPkYP =+= αα (A4)

We have already shown that () ieYE i
λ−−= 11 and

() ()2
1 ii eeYVar i

λλ −− −= , 2,1=i . Hence

 () () ===∑
∞

=1k

kYkPYE

() () () ()2211
1

22
1

11 YEYEkYkPkYkP
kk

αααα +==+= ∑∑
∞

=

∞

=

. (A5)

Now, the expression for ()YE , as stated in eq. (5), follows
immediately from (A4). We can now find ()2YE . It is equal
to

 () ==∑
∞

=1

2

k

kYPk () ()∑ ∑
∞

=

∞

=

==+=
1 1

2
2

21
2

1
k k

kYPkkYPk αα

 () ()2
22

2
11 YEYE αα + . (A6)

Then eq. (6) for the variance of Y can be immediately derived
from (A5) and (A6) and the definition of variance. End of
proof.

Proof of eq. (7) and (8): For any 1≥k we have

()∫
−

==
k

k

dxxfkYP
1

)(. (A7)

Let us introduce ()tm , the moment generating function of Y,

() ()∑
∞

=

==
1k

tk kYPetm (A8)

Then substituting (A7) into (A8) we obtain

() () () ()[]∑
∞

=

− +−−−=
1

1
k

kt eekeetm λλλλ λλλ (A9)

which reduces to:

 () () () () λ

λ
λλ

λ

λ
λ λλ −

−

−

−

−
+−−

−
−= t

t

t

t

e
eee

e
eetm

1
1

1
1 2 (A10)

The first moment of Y is the first derivative of ()tm evaluated
at 0=t and, similarly, the second moment of Y is the second
derivative of ()tm evaluated at 0=t . From this we get eq.
(7) and (8). End of proof.

