
Performance of Packet-to-Cell Segmentation Schemes in Input Buffered Packet Switches*
K. Christensen and K. Yoshigoe

Computer Science and Engineering

University of South Florida

Tampa, FL 33620
A. Roginsky

IBM Corporation

P.O. Box 12195

Research Triangle Park, NC 27709

N. Gunther

Performance Dynamics Company

4061 East Castro Blvd., Suite 110

Castro Valley, CA 94552

[image: image1.wmf]1

+

S

Abstract- Most input buffered packet switches internally segment variable-length packets into fixed-length cells. The last cell in a segmented packet will contain overhead bytes if the packet length is not evenly divisible by the cell length. Switch speed-up is used to compensate for this overhead. In this paper, we develop an analytical model of a single-server queue where an input stream of packets is segmented into cells for service. Analytical models are developed for M/M/1, M/H2/1, and M/E2/1 queues with a discretized (or quantized) service time. These models and simulation using real packet traces are used to evaluate the effect of speed-up on mean queue length. We propose and evaluate a new method of segmenting a packet trailer and subsequent packet header into a single cell. This cell merging method reduces the required speed-up. No changes to switch-matrix scheduling algorithms are needed. Simulation with a packet trace shows a reduction in the needed speed-up for an iSLIP scheduled input buffered switch.

I. INTRODUCTION

Packet switching is central to IP routing and Ethernet switching. Packets are typically variable in length (e.g., ranging from 64 to 1518 bytes for Ethernet). To accommodate very high-speed links, input buffered architectures are often used (e.g., the Cisco 12000 GSR [1]). These input buffered switches can use a crossbar as the switch fabric. Input buffered switches require a memory speed proportional to link speed. Output buffered switches require memory speed proportional to N times link speed (for N ports) making them infeasible for use with high-speed links and/or large numbers of ports. Input buffered switches overcome head-of-line blocking by employing virtual output queueing (VOQ) in each input port. A VOQ input buffered switch contains NxN VOQs for N ports. Fig. 1 shows a VOQ switch with each input port containing a packet classifier to determine the destination output port, packet-to-cell segmenter, VOQs, and a scheduler. VOQ switches use an iterative matching algorithm to match input ports with output ports to schedule the switch matrix. Iterative matching algorithms for VOQ crossbar switches include iSLIP [2] and FIRM [3]. These algorithms inherently require the use of internal fixed-length cells. This is because the crossbar is scheduled in cycles, one cycle for each set of cells forwarded from matched input ports to output ports. Thus, input buffered switches segment packets into cells, internally switch the cells, and then reassemble the cells into packets in reassembly buffers at the output ports. “Cell train” approaches to reducing packet-level delays have been studied (e.g., [4]).

Not all (very likely, only very few) packets have a length that is an even multiple of the internal cell length. Thus, the last cell of a segmented packet will often contain padding bytes. To compensate for internal forwarding of overhead bytes, the switch buffers and fabric must operate faster than link speed. That is, an internal speed-up is needed to achieve queue stability for high offered loads. In the worst case of S byte cells and contiguous arrivals of
[image: image163.wmf]Fig 4. Simulation results for experiment #1

0

25

50

75

100

125

150

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization (

r

)

Mean no. of packets E(

N

)

Padding 1.1x

Padding 1.0x

Padding 1.05x

Fig 4. Simulation results for experiment #1

0

25

50

75

100

125

150

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization (

r

)

Mean no. of packets E(

N

)

Padding 1.1x

Padding 1.0x

Padding 1.05x

 byte packets, the speed-up needs to be almost a factor of 2 for
[image: image2.wmf]S

2

 bytes of cell data needed to switch
[image: image3.wmf]1

+

S

 bytes of packet data. Speed-up is impossible when the memory and logic speeds of the switch technology are already close to being exceeded by link speeds. In any case, the overhead from speed-up adds cost to a switch implementation. No existing work quantitatively addresses how much speed-up is needed. New methods for reducing speed-up need to be investigated. We address these open problems.

This paper is organized as follows. Section II of this paper develops fundamental analytical models and contains numerical results from these models. Section III contains a simulation evaluation using real packet traces. Section IV proposes and evaluates a method of consecutive packets in cells to reduce overhead. Section V is a summary. An appendix contains proofs.

II. Models of Quantized Service Time Queues

We assume that packet lengths are randomly distributed and their distribution is known. For a given packet of length L bytes and a cell of size S bytes,
[image: image4.wmf](

)

S

L

ceil

 cells are needed to segment the packet where ceil is the standard ceiling function. The last packet in the sequence, or “train”, of cells will have
[image: image5.wmf]r

S

-

 padding or overhead bytes where
[image: image6.wmf](

)

S

L

r

,

Rem

=

 when L is not a multiple of S,
[image: image7.wmf]S

r

=

 otherwise. This results in an internal packet length (in cells) of
[image: image8.wmf]r

S

L

-

+

 bytes. Thus, an internal speed-up factor of
[image: image9.wmf]L

r

S

/

)

(

1

-

+

 is needed to switch the packet at link speed. For a given distribution of packet lengths, we address how this discretization (or quantization) caused by segmentation into cells changes the mean and variance of the number of bytes to be transported. This changes the service time of a queue modeling the input buffer of a packet switch that segments packets to cells as described. We model queueing delay of three classical queues given a ceiling of service time.

A. Ceiling of Well Known Distributions

Let X be an arbitrary random variable for which we know
[image: image10.wmf](

)

X

E

 and
[image: image11.wmf](

)

X

Var

. Let Y be the integer-valued random variable that is the ceiling of X and let
[image: image12.wmf]X

Y

Z

-

=

. If X has a wide smooth distribution and is not concentrated near a particular integer or set of integers, we can assume that Y and Z are almost independent and the distribution of Z on
[image: image13.wmf](

)

1

,

0

 is roughly uniform. We have
[image: image14.wmf](

)

2

1

=

Z

E

 and
[image: image15.wmf](

)

12

1

=

Z

Var

. We have
[image: image16.wmf](

)

(

)

(

)

(

)

(

)

2

1

+

=

+

=

+

=

X

E

Z

E

X

E

Z

X

E

Y

E

 and
[image: image17.wmf](

)

(

)

(

)

(

)

(

)

12

1

Var

+

=

+

=

-

=

Y

Z

Var

Y

Var

Z

Y

Var

X

Var

 and hence
[image: image18.wmf](

)

(

)

12

1

-

=

X

Var

Y

Var

.

For an exponentially distributed random variable X with
[image: image19.wmf](

)

x

X

e

x

f

m

m

-

=

, let
[image: image20.wmf](

)

X

Y

ceil

=

. Then Y is geometrically distributed with:

[image: image21.wmf](

)

m

-

-

=

e

Y

E

1

1

 and

 (1)

[image: image22.wmf](

)

2

)

1

(

m

m

-

-

-

=

e

e

Y

Var

.

 (2)

The proof of this is in the appendix. As expected,

[image: image23.wmf]2

1

1

1

1

lim

0

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

-

®

m

m

m

e

 and

 (3)

[image: image24.wmf](

)

12

1

1

1

lim

2

2

0

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

-

-

®

m

m

m

m

e

e

.

 (4)

Let H2 denote a two-stage hyperexponentially distributed random variable X with
[image: image25.wmf](

)

x

μ

x

μ

X

e

μ

α

e

μ

α

x

f

2

1

2

2

1

1

-

-

+

=

 and
[image: image26.wmf]0

>

x

,
[image: image27.wmf]0

,

2

1

³

α

α

, and
[image: image28.wmf]1

2

1

=

+

α

α

, let
[image: image29.wmf](

)

X

Y

ceil

=

. Then,

[image: image30.wmf](

)

2

1

1

1

2

1

μ

μ

e

α

e

α

Y

E

-

-

-

+

-

=

 and

 (5)

[image: image31.wmf](

)

(

)

(

)

2

2

2

2

1

)

1

(

1

)

1

(

1

2

2

1

1

Y

E

e

e

α

e

e

α

Y

Var

μ

μ

μ

μ

-

-

+

+

-

+

=

-

-

-

-

. (6)

The proof of this is in the appendix.

Let E2 denote a two-stage Erlang distributed random variable X with
[image: image32.wmf]x

xe

x

f

m

m

-

=

2

)

(

 (i.e., both service rates are the same). Then Y has,

[image: image33.wmf](

)

2

)

1

(

1

)

1

(

m

m

m

-

-

-

+

-

=

e

e

Y

E

 and (7)

[image: image34.wmf](

)

4

2

2

3

)

1

(

]

)

2

(

)

1

(

)

1

[(

m

m

m

m

m

m

m

-

-

-

-

-

+

-

-

-

+

=

e

e

e

e

Y

Var

. (8)

The proof of this is in the appendix. When
[image: image35.wmf])

(

Y

Var

 is evaluated numerically, we can see that it is usually greater than the value of
[image: image36.wmf])

(

X

Var

, which is equal to
[image: image37.wmf]2

/

2

m

. The reason for this is that the Erlang distribution does not satisfy the heuristic assumptions made in Section IIA. It has a peak, which makes the discrete picture more complicated.

B. M/G/1 Analysis
The quantization described in Section IIA corresponds to taking the ceiling function of the continuous-valued service time. We introduce a superscript notation ∆ for these quantized service times so that the quantized version of an M/M/1 queue is denoted
[image: image38.wmf]/1

M/M

Δ

, which is also equivalent to M/Geo/1 with mean service time
[image: image39.wmf](

)

1

1

-

-

-

m

e

 defined by eq. (1). Since
[image: image40.wmf](

)

Y

E

 and
[image: image41.wmf](

)

Y

Var

 are continuous functions, the mean number of customers in the system
[image: image42.wmf](

)

N

E

 can be determined from the standard Pollaczek-Khintchine (P-K) M/G/1 formula [5]:

[image: image43.wmf](

)

(

)

(

)

ú

û

ù

ê

ë

é

+

-

+

=

Y

E

Y

Var

N

E

2

2

1

1

2

)

(

r

r

r

.

 (9)

where
[image: image44.wmf](

)

Y

E

l

r

=

 is the quantized load. For
[image: image45.wmf]/1

M/M

Δ

 eq. (9) reduces to:

[image: image46.wmf]÷

ø

ö

ç

è

æ

-

+

-

=

-

1

2

2

)

(

l

l

l

m

e

N

E

 (10)

with  the mean service rate of the underlying exponential distribution used to calculate the quantized service times. We have also solved
[image: image47.wmf]/1

M/H

2

D

 and
[image: image48.wmf]/1

M/E

2

D

 queues for
[image: image49.wmf](

)

N

E

, but those formulas are far more complex than eq. (10) and are not shown here. Moreover, beyond the special cases discussed in Section IIA, we do not expect an arbitrary response time distribution to possess an analytic quantized form, so a more general approach is needed.

[image: image158.wmf]Fig 3. Numerical results for M/M /1 for various values of

L

0

5

10

15

20

25

30

35

40

45

50

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization (

r

)

Mean no. of packets E(

N

)

L=100 bytes

L=500 bytes

L=1000 bytes

Cell size, S = 64 bytes

Fig 3. Numerical results for M/M /1 for various values of

L

0

5

10

15

20

25

30

35

40

45

50

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization (

r

)

Mean no. of packets E(

N

)

L=100 bytes

L=500 bytes

L=1000 bytes

Cell size, S = 64 bytes

C. General Quantization Algorithm

Let
[image: image50.wmf](

)

t

f

 be a continuous service time probability density, then the following algorithm can be applied either algebraically or numerically:

1. Determine the cumulative distribution function

[image: image51.wmf](

)

(

)

ò

=

t

dx

x

f

t

F

0

 (11)

which corresponds to the total area or probability.

2. Construct the continuous difference function:

[image: image52.wmf](

)

(

)

(

)

t

F

t

F

t

F

-

+

=

1

ˆ

.

 (12)

which corresponds to the sub-area in each time-domain interval. The procedure, so far, is the same as that used for proofs in the Appendix. If
[image: image53.wmf](

)

t

F

ˆ

 does not possess a closed analytic form, numerical techniques can be employed.

3. Convolve eq. (12) with the Dirac comb III [9] to produce:

[image: image54.wmf](

)

(

)

(

)

å

¥

=

-

-

=

×

0

1

ˆ

ˆ

k

k

t

k

F

III

t

F

d

,

 (13)

where
[image: image55.wmf](

)

×

d

 is the Dirac delta function [7] chosen to conform to the conventions used in the Appendix. Selecting integer sampling points with
[image: image56.wmf]1

=

D

k

 corresponds to applying the ceiling function of Section IIA (see Fig. 2). However, eq. (13) is guaranteed to be the correct discrete representation for any arbitrary continuous service time density
[image: image57.wmf](

)

t

f

.

4.
The corresponding mean and variance of the quantized distribution are computed from:

[image: image58.wmf](

)

(

)

(

)

1

ˆ

1

-

-

=

å

=

k

t

k

F

k

Y

E

N

k

d

 and
 (14)

[image: image59.wmf](

)

(

)

(

)

(

)

(

)

å

=

G

-

-

-

=

N

k

k

t

k

F

Y

E

k

Y

Var

1

2

1

ˆ

d

.
 (15)

As an example applicaton of this quantization algorithm, consider an
[image: image60.wmf]/1

M/

G

 queue with Gamma probability density defined by:

[image: image61.wmf](

)

(

)

b

a

a

a

b

b

a

t

e

t

t

f

-

-

G

=

1

,

,

 (16)

[image: image159.wmf]Fig. 1. VOQ switch showing packet

-

to

-

cell

segmenter

Control flow

Classifier

Crossbar

Scheduler

Output 1

Output 2

1, 1

1, 2

Input 1

2, 1

2, 2

Input 2

1,1

1,2

2,1

2,2

VOQs

VOQs

Segmenter

Fig. 1. VOQ switch showing packet

-

to

-

cell

segmenter

Control flow

Classifier

Crossbar

Scheduler

Output 1

Output 2

1, 1

1, 2

Input 1

2, 1

2, 2

Input 2

1,1

1,2

2,1

2,2

VOQs

VOQs

Segmenter

[image: image160.wmf]Fig 2.

Dirac

comb for

F

(

t

) (exponential with

m

= 0.5)

^

0.00

0.20

0.40

0.60

0.80

1.00

0

1

2

3

4

5

6

7

8

9

10

Discrete time (

k

)

Probability

^

 =

F

(

t

)

 = Comb (III)

 = Convolution

Fig 2.

Dirac

comb for

F

(

t

) (exponential with

m

= 0.5)

^

Fig 2.

Dirac

comb for

F

(

t

) (exponential with

m

= 0.5)

^

0.00

0.20

0.40

0.60

0.80

1.00

0

1

2

3

4

5

6

7

8

9

10

Discrete time (

k

)

Probability

^

 =

F

(

t

)

 = Comb (III)

 = Convolution

where the gamma function
[image: image62.wmf](

)

!

1

a

a

=

+

G

 is a generalization of the factorial function [7]. The parameters  and  respectively determine the shape and the scale of eq. (16), which makes it attractive for modeling a variety of empirical service time distributions [8]. If
[image: image63.wmf]1

=

a

, eq. (16) reduces to the exponential density function discussed in Section IIA. Unfortunately, this inherent modeling flexibility comes with the limitation that no analytic form exists for the quantized distribution
[image: image64.wmf](

)

III

t

F

×

G

ˆ

 in eq. (13). We therefore proceed numerically.

Using the summary network statistics in Table 1, we have
[image: image65.wmf](

)

82

.

3

2

=

=

s

m

a

 and
[image: image66.wmf]46

.

0

=

=

a

b

m

. Substituting these values into eqs. (14) and (15) produces
[image: image67.wmf](

)

24

.

2

=

G

Y

E

 and
[image: image68.wmf](

)

89

.

0

=

G

Y

Var

, respectively and eq. (9) gives the mean queue length of
[image: image69.wmf]/1

M/

Δ

G

 (e.g.,
[image: image70.wmf](

)

67

.

5

=

G

N

E

 at an offered load of
[image: image71.wmf]90

.

0

=

r

 (compare this with Fig. 3)).

Eq. (13) can also be used to construct the appropriate queue-theoretic transforms for the quantized service time distribution from the Laplace transform:

[image: image72.wmf](

)

[

]

(

)

(

)

ò

¥

-

-

×

=

-

0

1

ˆ

1

dt

e

III

t

F

z

W

t

z

l

l

. (17)

For the
[image: image73.wmf]/1

M/M

Δ

 queue:

[image: image74.wmf](

)

[

]

(

)

(

)

(

)

m

l

m

l

l

e

e

e

e

z

W

z

z

-

-

=

-

-

-

-

-

1

1

1

1

 (18)

and the corresponding P-K transform [5] of the queue length distribution:

[image: image75.wmf](

)

(

)

(

)

(

)

[

]

(

)

[

]

z

z

W

z

W

z

z

g

-

-

-

-

-

=

l

l

r

1

1

1

1

 (19)

reduces to:

[image: image76.wmf](

)

(

)

(

)

(

)

[

]

(

)

(

)

(

)

m

l

m

l

m

l

l

ze

e

z

e

e

e

z

z

g

z

z

z

-

-

-

-

-

-

=

-

-

+

-

-

-

-

1

1

1

1

1

1

1

. (20)

All the moments of the queue length distribution can be found by taking successive derivatives of
[image: image77.wmf](

)

z

g

 [5]. The first moment is the mean queue length:

[image: image78.wmf](

)

(

)

(

)

(

)

m

m

l

l

l

e

e

dz

z

dg

N

E

z

-

-

-

=

º

=

1

2

2

2

1

, (21)

which is equivalent to eq. (10). The inverse of
[image: image79.wmf](

)

z

g

 (if it exists) produces the queue length probability distribution.

D. Application of Models to Packet-to-Cell Segmenting

We now apply the
[image: image80.wmf]/1

M/M

Δ

 model to predict
[image: image81.wmf](

)

N

E

 in packets given L, S, and a utilization . The utilization, , is based on the arriving rate of packets (in bits per second) divided by the link rate (in bits per second). Packet arrivals are Poisson, and packet lengths are exponentially distributed. These assumptions are very restrictive and unrealistic of real packet traffic. However, even with these restrictive assumptions we can observe the general behavior of segmentation and speed-up. In the next section, these restrictive assumptions are removed in a simulation study.

For a given L and S, the mean service time in cell time units is
[image: image82.wmf]S

L

T

s

=

. For a given link utilization based on packets, , the mean interarrival time is
[image: image83.wmf]r

s

a

T

T

=

. Then, the mean arrival rate
[image: image84.wmf]a

T

λ

1

=

 and mean service rate
[image: image85.wmf]s

T

μ

1

=

. For the M/M/1,
[image: image86.wmf]m

l

r

=

 and mean number of packets in the system
[image: image87.wmf](

)

(

)

r

r

-

=

1

N

E

. For the
[image: image88.wmf]/1

M/M

Δ

 the utilization for quantized service time is,
[image: image89.wmf](

)

(

)

μ

e

λ

Y

E

λ

ρ

-

-

=

×

=

¢

1

. The speed-up, , needed to achieve carried load equal to offered load (i.e., stability for all offered loads up to
[image: image90.wmf]1

=

r

) is
[image: image91.wmf](

)

(

)

μ

e

μ

Y

E

μ

ρ

ρ

σ

-

-

=

×

=

¢

=

1

. Fig. 3 shows the numerical results for
[image: image92.wmf](

)

N

E

 for a range of
[image: image93.wmf]0

.

1

,

,

51

.

0

,

50

.

0

K

=

r

 and
[image: image94.wmf]=

L

100, 500, and 1000 bytes for
[image: image95.wmf]64

=

S

 bytes. To achieve stability, the speed-up required is
[image: image96.wmf]354

.

1

=

σ

 for
[image: image97.wmf]100

=

L

 bytes,
[image: image98.wmf]065

.

1

=

σ

 for
[image: image99.wmf]500

=

L

 bytes, and
[image: image100.wmf]032

.

1

=

σ

 for
[image: image101.wmf]1000

=

L

 bytes. These numerical results show that without speed-up,
[image: image102.wmf](

)

N

E

 increases rapidly at high offered loads and that the smaller L is, the greater is the effect of segmentation on
[image: image103.wmf](

)

N

E

. The analytical results in Fig. 3 have been validated with a simulation model. This model was then used in the next section for more realistic traffic models.

III. Simulation of iSLIP with Packet Segmentation
[image: image161.wmf]Fig 6. Simulation results for experiment #1 with cell merging

0

25

50

75

100

125

150

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization (

r

)

Mean no. of packets E(

N

)

Merging 1.05x

Merging 1.0x

Merging 1.1x

 = Fig. 3 results

Fig 6. Simulation results for experiment #1 with cell merging

0

25

50

75

100

125

150

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization (

r

)

Mean no. of packets E(

N

)

Merging 1.05x

Merging 1.0x

Merging 1.1x

 = Fig. 3 results

[image: image162.wmf]Fig. 5. FSM for cell merging

EMPTY

SEGMENTING

PARTIAL

T0

packet arrival

T1 last cell is partial

last cell is full T2

packet arrival T3

cell merging timer expires T4

Fig. 5. FSM for cell merging

EMPTY

SEGMENTING

PARTIAL

T0

packet arrival

T1 last cell is partial

last cell is full T2

packet arrival T3

cell merging timer expires T4

We evaluated the effects of discretization on a real network traffic using a simulation model with a packet trace as input. We used a previously built and validated iSLIP simulation model [6] for this simulation evaluation. Over 60 million IP packets were collected from the University of South Florida (USF) Internet2 OC-3 (155-Mbps) link. The packet trace collected packet interarrival times, packet length, and packet headers. Table 2 shows the summary of the packet trace. The mean packet length was 764 bytes. The most common packet length was 1518 bytes (31.4% of all packets) followed by 64 bytes (28.7%), 1438 bytes (7.7%), 70 bytes (2.7%), and 594 bytes (1.4%). All other packet length occurs at less than 1%. The trace file of 60 million packets was split into 16 smaller files, each with the same number of packets. Each of these smaller files was then input to a port in the modeled 16-port iSLIP switch. The destination output port was assigned using a modulo-16 function of the packet IP destination address. Output port utilization of switch is not uniform for real traffic. In our experiment, we refer utilization to be the maximum offered load among all 16 ports. Service time (i.e., simulated line speed) is controlled to achieve a desired utilization. For all experiments, control variables are offered load and speed-up, and the response variable is mean queue length. An internal cell size of 64 bytes was used. Two experiments were run:
Experiment #1 – For no speedup, 1.05x and 1.1x speedups with segmentation and cell padding, mean queue length is measured for utilization ranging from 50% to 99%.
Experiment #2 – The minimum speedup needed for 99% utilization is systematically identified. A queue length of 1000 or greater is considered a sign of instability.

Fig. 4 shows the results for the experiment #1. It can be seen that no speedup and the 1.05x speedup cases become unstable above 93% and 97% utilization, respectively. The 1.1x speedup case can achieve stability for the entire range of utilizations. For experiment #2, it was found that the minimum speed-up needed for 99% utilization was 1.06x.
IV. Packet-to-Cell Segmentation with Cell Merging
We propose a new method of segmenting packets into cells that applies to input buffered switches and reduces the amount of speed-up needed to achieve stability. When a packet is segmented into cells (i.e., in the segmenters shown in Fig. 1) the last cell of a packet may be a partially filled cell. Instead of queueing this partial cell (with padding bytes) to the VOQ, it is held back to wait for the next arriving packet. The next arriving packet then starts its segmentation with the held back cell from the previous packet. That is, the header bytes of the arriving packet are merged with the trailer bytes from the previous packet. We call this cell merging. A finite state machine (FSM) for cell merging is shown in Fig. 5. The EMPTY state occurs when there is no held back cell and the segmenter is idle. An arriving packet transitions (T0) the FSM to the SEGMENTING state where the packet is segmented into cells and the cells queued in the VOQ. If the last cell in a packet is a partial cell it is held back and the FSM transitions (T1) to the PARTIAL state (otherwise, the transition is to the EMPTY state (T2)). In the PARTIAL state, the segmenter is idle and waiting for an arriving packet to transition (T3) back to the SEGMENTING state. In the PARTIAL state a cell merging timer is started when the VOQ is empty (e.g., all cells segemented and queued have been forwarded). If this timer expires before an arriving packet, then the held back cell is queued with padding bytes and transition (T4) is to the EMPTY state. The purpose of the timer is to prevent a packet from being unfairly starved if there are no subsequent arrivals for a long period of time.

A. Simulation Evaluation of Cell Merging

Experiments #1 and #2 of Section III were repeated for the cell merging mechanism with the cell merging timer expiration value set to 10 cell times. Fig. 6 shows the mean queue of cell merging compared with the results of Fig. 4 (no cell merging). The packet merging mechanism with no speedup becomes unstable above 95%. The cell merging mechanism with a speedup of 1.05x and 1.1x achieved stability for all offered load measured. Cell merging results in a lower mean queueing delay for high utilizations. From experiment #2 it was found that the minimum speedup needed was 1.04x. Thus, cell merging required 2% less speedup than packet-to-cell segmentation without cell merging. We experimented with cell merging timer values. A large (100 or 1000 cell times) timer value results in high queueing delays at low utilization and no benefit at high utilizations (where a time-out would rarely occur due to frequently arriving packets). We found that a value of 10 cells times works well. For a 10-Gbps link, 10 cell times corresponds to a very small 512 ns.

V. Summary and Future Work
This paper makes two contributions. The first is in discovering the application of quantized queues to modeling of packets-to-cells segmentation for packet switches. This is the first work to analytically show the speed-up value needed for a packet-to-cell segmentation. We have formally derived and proved expressions for mean queue length for
[image: image104.wmf]/1

M/M

Δ

,
[image: image105.wmf]/1

M/H

2

D

, and
[image: image106.wmf]/1

M/E

2

D

. We have also described a general quantization procedure. Our second contribution is to evaluate the speed-up penalty of packets-to-cells segmentation and propose an improved method of segmentation. Our proposed cell merging method reduces the required speed-up in an input buffered switch. This is significant because increases in link speed continue to outpace improvements in memory speed. We cannot afford up to a 2x speed-up just for handling the variable length nature of IP packets in the Internet. Even a small speed-up adds cost to high-speed packet switches.

We believe that quantized queues are an area of much future work in both theory and application. Future work includes investigating inverting the P-K transform to determine mean queue length distributions. Future work also includes investigating additional practical methods to further reduce the required speed-up in VOQ switches.
Acknowledgment
The authors thank the anonymous referees for their helpful comments that have improved the quality of this paper. The authors also thank Bjarne Helvik of NTNU for his discussion on the properties of the distribution of Z in Section IIA
References

[1]
Cisco 12000 Gigabit Switch Router [Online]. Available: http://www.cisco.com.

[2]
N. McKeown, “The iSLIP Scheduling Algorithm for Input-Queued Switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, Apr. 1999, pp. 188-201.

[3]
D. Serpanos and P. Antoniadis, “FIRM: A Class of Distributed Scheduling Algorithms for High-Speed ATM Switches with Multiple Input Queues,” Proc. IEEE INFOCOM, Mar. 2000, pp. 548-55.

[4]
M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Packet-Mode Scheduling in Input-Queued Cell-Based Switch,” IEEE/ACM Trans. Networking, vol. 10, no. 5, Oct. 2002, pp. 666-77.

[5]
L. Kleinrock, Queueing Systems, Volume 1: Theory, New York: John Wiley & Sons, 1975.

[6]
K. Yoshigoe and K. Christensen, “An Evolution to Crossbar Switches with Buffered Cross Points,” IEEE Network, vol. 7, no. 5, Sept.-Oct. 2003, pp. 48-56.
[7]
M. Abramowitz and A. Stegun, Handbook of Mathematical Functions, New York: Dover Press, 1970.

[8]
N. Gunther, The Practical Performance Analyst, New York: McGraw-Hill, 1998.

[9]
A. Oppenheim, A Willsky, and I. Young, Signals and Systems, New Jersey: Prentice-Hall, 1983.

Appendix

In the appendix we derive formulas for the mean and variance of the ceiling of exponentially, hyperexponentially, and two-stage Erlang distributed random variables. That is, proofs are given for eq. (1) and (2) for exponential, eq. (5) and (6) for hyperexponential, and eq. (7) and (8) for two-stage Erlang.
Proof of eq. (1) and (2): For any
[image: image107.wmf]1

³

k

 we compute

[image: image108.wmf](

)

(

)

=

£

<

-

=

=

k

X

k

P

k

Y

P

1

[image: image109.wmf](

)

(

)

(

)

(

)

)

1

(

1

1

1

-

-

-

-

-

-

=

-

-

k

k

X

X

e

e

k

F

k

F

l

l

.
 (A1)

We can rewrite this
[image: image110.wmf](

)

(

)

l

l

-

-

-

-

=

=

e

e

k

Y

P

k

1

)

1

(

. Let
[image: image111.wmf]1

-

=

Y

Z

. Then
[image: image112.wmf](

)

(

)

(

)

l

l

-

-

-

=

+

=

=

=

e

e

k

Y

P

k

Z

P

k

1

1

. From this it follows that Z has a geometric distribution, that is,
[image: image113.wmf](

)

p

q

k

Z

P

k

=

=

,
[image: image114.wmf]1

=

+

q

p

, with parameters p, q, where
[image: image115.wmf]l

-

=

e

q

 and
[image: image116.wmf]l

-

-

=

e

p

1

. It is known that the mean of Z is equal to
[image: image117.wmf]p

q

 and the variance of Z is equal to
[image: image118.wmf]2

/

p

q

. Hence, we have

[image: image119.wmf](

)

(

)

l

l

l

-

-

-

-

=

+

-

=

+

=

e

e

e

Z

E

Y

E

1

1

1

1

1

 and
 (A2)

[image: image120.wmf](

)

(

)

(

)

2

1

l

l

-

-

-

=

=

e

e

Z

Var

Y

Var

, (A3)

which are equations (1) and (2), respectively. End of proof.

Proof of eq. (5) and (6): For convenience, we will define
[image: image121.wmf](

)

x

e

x

f

1

1

1

l

l

-

=

 and
[image: image122.wmf](

)

x

e

x

f

2

2

2

l

l

-

=

, so that
[image: image123.wmf](

)

(

)

(

)

x

f

x

f

x

f

2

2

1

1

a

a

+

=

. Let us introduce two random variables
[image: image124.wmf]1

X

 and
[image: image125.wmf]2

X

, such that
[image: image126.wmf]1

X

 has the pdf
[image: image127.wmf]1

f

 and
[image: image128.wmf]2

X

 has the pdf
[image: image129.wmf]2

f

. (We are not assuming that these two random variables are independent and are not implying that
[image: image130.wmf]2

1

X

X

X

+

=

). We will also denote
[image: image131.wmf](

)

1

1

ceil

X

Y

=

 and
[image: image132.wmf](

)

2

2

ceil

X

Y

=

. For any
[image: image133.wmf]1

³

k

, we compute

[image: image134.wmf](

)

(

)

(

)

=

=

£

<

-

=

=

ò

-

k

k

dx

x

f

k

X

k

P

k

Y

P

1

1

[image: image135.wmf](

)

(

)

=

+

ò

ò

-

-

dx

x

f

dx

x

f

k

k

k

k

1

2

2

1

1

1

a

a

[image: image136.wmf](

)

(

)

=

£

<

-

+

£

<

-

k

X

k

P

k

X

k

P

2

2

1

1

1

1

a

a

[image: image137.wmf](

)

(

)

.

2

2

1

1

k

Y

P

k

Y

P

=

+

=

a

a

 (A4)

We have already shown that
[image: image138.wmf](

)

i

e

Y

E

i

l

-

-

=

1

1

 and
[image: image139.wmf](

)

(

)

2

1

i

i

e

e

Y

Var

i

l

l

-

-

-

=

,
[image: image140.wmf]2

,

1

=

i

. Hence

[image: image141.wmf](

)

(

)

=

=

=

å

¥

=

1

k

k

Y

kP

Y

E

[image: image142.wmf](

)

(

)

(

)

(

)

2

2

1

1

1

2

2

1

1

1

Y

E

Y

E

k

Y

kP

k

Y

kP

k

k

a

a

a

a

+

=

=

+

=

å

å

¥

=

¥

=

. (A5)

Now, the expression for
[image: image143.wmf](

)

Y

E

, as stated in eq. (5), follows immediately from (A4). We can now find
[image: image144.wmf](

)

2

Y

E

. It is equal to

[image: image145.wmf](

)

=

=

å

¥

=

1

2

k

k

Y

P

k

 EMBED Equation.3 [image: image146.wmf](

)

(

)

å

å

¥

=

¥

=

=

=

+

=

1

1

2

2

2

1

2

1

k

k

k

Y

P

k

k

Y

P

k

a

a

[image: image147.wmf](

)

(

)

2

2

2

2

1

1

Y

E

Y

E

a

a

+

.

 (A6)

Then eq. (6) for the variance of Y can be immediately derived from (A5) and (A6) and the definition of variance. End of proof.

Proof of eq. (7) and (8): For any
[image: image148.wmf]1

³

k

 we have

[image: image149.wmf](

)

ò

-

=

=

k

k

dx

x

f

k

Y

P

1

)

(

. (A7)

Let us introduce
[image: image150.wmf](

)

t

m

, the moment generating function of Y,

[image: image151.wmf](

)

(

)

å

¥

=

=

=

1

k

tk

k

Y

P

e

t

m

 (A8)

Then substituting (A7) into (A8) we obtain

[image: image152.wmf](

)

(

)

(

)

(

)

[

]

å

¥

=

-

+

-

-

-

=

1

1

k

k

t

e

e

k

e

e

t

m

l

l

l

l

l

l

l

 (A9)

which reduces to:

[image: image153.wmf](

)

(

)

(

)

(

)

l

l

l

l

l

l

l

l

l

-

-

-

-

-

+

-

-

-

-

=

t

t

t

t

e

e

e

e

e

e

e

t

m

1

1

1

1

2

 (A10)

The first moment of Y is the first derivative of
[image: image154.wmf](

)

t

m

 evaluated at
[image: image155.wmf]0

=

t

 and, similarly, the second moment of Y is the second derivative of
[image: image156.wmf](

)

t

m

 evaluated at
[image: image157.wmf]0

=

t

. From this we get eq. (7) and (8). End of proof.

TABLE II

Packet Trace Summary Statistics

�
 Packet interarrival time�
Packet length�
�
Mean�
 66.50 µs�
 764 bytes�
�
Standard deviation�
 68.20 µs�
 672 bytes�
�
CoV�
 1.03�
 0.88�
�
Minimum�
 0.95 µs�
 64 bytes�
�
Maximum�
 2385.97 s�
1518 bytes�
�
99%�
 338.08 µs�
 1518 bytes�
�
Shape of distribution�
Decreasing�
Bimodal�
�

TABLE I

Summary Network Statistics (from [8])

Statistic�
Value�
�
 Sample mean (m)�
1.74�
�
 Sample standard deviation (s)�
0.89�
�
 Estimated shape ()�
3.82�
�
 Estimated scale ()�
0.46�
�

*This material is based upon work supported by the National Science Foundation under Grant No. 9875177.

_1124228488.unknown

_1139810373.unknown

_1139989231.unknown

_1140329199.unknown

_1140330990.unknown

_1140331330.unknown

_1140331806.unknown

_1140332326.unknown

_1140333195.unknown

_1140331845.unknown

_1140332060.unknown

_1140331488.unknown

_1140331523.unknown

_1140331602.unknown

_1140331495.unknown

_1140331346.unknown

_1140331234.unknown

_1140331269.unknown

_1140331280.unknown

_1140331258.unknown

_1140331145.unknown

_1140331211.unknown

_1140331068.unknown

_1140331144.unknown

_1140331048.unknown

_1140329296.unknown

_1140329320.unknown

_1140330843.unknown

_1140330881.unknown

_1140329561.unknown

_1140329304.unknown

_1140329308.unknown

_1140329300.unknown

_1140329240.unknown

_1140329273.unknown

_1140329203.unknown

_1140329159.unknown

_1140329188.unknown

_1140329192.unknown

_1140329163.unknown

_1140243317.unknown

_1140329155.unknown

_1140011874.unknown

_1139812222.unknown

_1139898744.unknown

_1139900270.unknown

_1139986757.unknown

_1139900457.unknown

_1139899093.unknown

_1139899201.unknown

_1139819270.unknown

_1139824598.unknown

_1139898707.unknown

_1139824628.unknown

_1139824026.unknown

_1139812396.unknown

_1139814606.unknown

_1139814655.unknown

_1139814316.unknown

_1139812326.unknown

_1139812361.unknown

_1139812302.unknown

_1139811582.unknown

_1139812088.unknown

_1139812186.unknown

_1139811676.unknown

_1139810524.unknown

_1139811413.unknown

_1139810417.unknown

_1135751923.unknown

_1139809557.unknown

_1139810022.unknown

_1139810116.unknown

_1139809586.unknown

_1139753418.unknown

_1139753746.unknown

_1139753789.unknown

_1139753434.unknown

_1135779905.unknown

_1135520347.unknown

_1135664419.unknown

_1135751814.unknown

_1135663964.unknown

_1135663985.unknown

_1135663951.unknown

_1124228509.unknown

_1124228515.unknown

_1124228502.unknown

_1121850156.unknown

_1122232023.unknown

_1123418161.unknown

_1123925936.unknown

_1124038506.unknown

_1124038516.unknown

_1123925965.unknown

_1123925957.unknown

_1123505876.unknown

_1123925896.unknown

_1123418190.unknown

_1123418100.unknown

_1123418119.unknown

_1122232295.unknown

_1122555977.unknown

_1122232115.unknown

_1121850177.unknown

_1121850628.unknown

_1122207369.unknown

_1122207424.unknown

_1122207470.unknown

_1122207416.unknown

_1121850633.unknown

_1121850430.unknown

_1121850447.unknown

_1121850460.unknown

_1121850442.unknown

_1121850184.unknown

_1121850166.unknown

_1121850172.unknown

_1121850161.unknown

_1118758996.unknown

_1119093667.unknown

_1119094639.unknown

_1119103726.unknown

_1121850132.unknown

_1119094666.unknown

_1119094688.unknown

_1119094122.unknown

_1119094341.unknown

_1119094346.unknown

_1119094319.unknown

_1119093864.unknown

_1119093228.unknown

_1119093290.unknown

_1119092609.unknown

_1118690776.unknown

_1118697860.unknown

_1118697965.unknown

_1118750710.unknown

_1118697852.unknown

_1118582123.unknown

_1118690672.unknown

_1118690707.unknown

_1118600120.unknown

_1118600067.unknown

_1118582100.unknown

