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Abstract- Most input buffered packet switches internally 

segment variable-length packets into fixed-length cells.  The last 
cell in a segmented packet will contain overhead bytes if the 
packet length is not evenly divisible by the cell length.  Switch 
speed-up is used to compensate for this overhead.  In this paper, 
we develop an analytical model of a single-server queue where 
an input stream of packets is segmented into cells for service.  
Analytical models are developed for M/M/1, M/H2/1, and M/E2/1 
queues with a discretized (or quantized) service time.  These 
models and simulation using real packet traces are used to 
evaluate the effect of speed-up on mean queue length.  We 
propose and evaluate a new method of segmenting a packet 
trailer and subsequent packet header into a single cell.  This cell 
merging method reduces the required speed-up.  No changes to 
switch-matrix scheduling algorithms are needed.  Simulation 
with a packet trace shows a reduction in the needed speed-up for 
an iSLIP scheduled input buffered switch. 

 
I.  INTRODUCTION 

Packet switching is central to IP routing and Ethernet 
switching.  Packets are typically variable in length (e.g., 
ranging from 64 to 1518 bytes for Ethernet).  To 
accommodate very high-speed links, input buffered 
architectures are often used (e.g., the Cisco 12000 GSR [1]).  
These input buffered switches can use a crossbar as the switch 
fabric.  Input buffered switches require a memory speed 
proportional to link speed.  Output buffered switches require 
memory speed proportional to N times link speed (for N 
ports) making them infeasible for use with high-speed links 
and/or large numbers of ports.  Input buffered switches 
overcome head-of-line blocking by employing virtual output 
queueing (VOQ) in each input port.  A VOQ input buffered 
switch contains NxN VOQs for N ports.  Fig. 1 shows a VOQ 
switch with each input port containing a packet classifier to 
determine the destination output port, packet-to-cell 
segmenter, VOQs, and a scheduler.  VOQ switches use an 
iterative matching algorithm to match input ports with output 
ports to schedule the switch matrix.  Iterative matching 
algorithms for VOQ crossbar switches include iSLIP [2] and 
FIRM [3].  These algorithms inherently require the use of 
internal fixed-length cells.  This is because the crossbar is 
scheduled in cycles, one cycle for each set of cells forwarded 
from matched input ports to output ports.  Thus, input 
buffered switches segment packets into cells, internally switch 

the cells, and then reassemble the cells into packets in 
reassembly buffers at the output ports.  “Cell train” 
approaches to reducing packet-level delays have been studied 
(e.g., [4]). 

Not all (very likely, only very few) packets have a length 
that is an even multiple of the internal cell length.  Thus, the 
last cell of a segmented packet will often contain padding 
bytes.  To compensate for internal forwarding of overhead 
bytes, the switch buffers and fabric must operate faster than 
link speed.  That is, an internal speed-up is needed to achieve 
queue stability for high offered loads.  In the worst case of S 
byte cells and contiguous arrivals of 1+S  byte packets, the 
speed-up needs to be almost a factor of 2 for S2  bytes of cell 
data needed to switch 1+S  bytes of packet data.  Speed-up is 
impossible when the memory and logic speeds of the switch 
technology are already close to being exceeded by link 
speeds.  In any case, the overhead from speed-up adds cost to 
a switch implementation.  No existing work quantitatively 
addresses how much speed-up is needed.  New methods for 
reducing speed-up need to be investigated.  We address these 
open problems. 

This paper is organized as follows.  Section II of this 
paper develops fundamental analytical models and contains 
numerical results from these models.  Section III contains a 
simulation evaluation using real packet traces.  Section IV 
proposes and evaluates a method of consecutive packets in 
cells to reduce overhead.  Section V is a summary.  An 
appendix contains proofs. 
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II.  MODELS OF QUANTIZED SERVICE TIME QUEUES 

We assume that packet lengths are randomly distributed 
and their distribution is known.  For a given packet of length 
L bytes and a cell of size S bytes, ( )SLceil  cells are needed 
to segment the packet where ceil is the standard ceiling 
function.  The last packet in the sequence, or “train”, of cells 
will have rS −  padding or overhead bytes where 

( )SLr ,Rem=  when L is not a multiple of S, Sr =  
otherwise.  This results in an internal packet length (in cells) 
of rSL −+  bytes.  Thus, an internal speed-up factor of 

LrS /)(1 −+  is needed to switch the packet at link speed.  
For a given distribution of packet lengths, we address how 
this discretization (or quantization) caused by segmentation 
into cells changes the mean and variance of the number of 
bytes to be transported.  This changes the service time of a 
queue modeling the input buffer of a packet switch that 
segments packets to cells as described.  We model queueing 
delay of three classical queues given a ceiling of service time. 

A.  Ceiling of Well Known Distributions 

Let X be an arbitrary random variable for which we know 
( )XE  and ( )XVar .  Let Y be the integer-valued random 

variable that is the ceiling of X and let XYZ −= .  If X has a 
wide smooth distribution and is not concentrated near a 
particular integer or set of integers, we can assume that Y and 
Z are almost independent and the distribution of Z on ( )1,0  is 
roughly uniform.  We have ( ) 21=ZE  and ( ) 121=ZVar .  
We have ( ) ( ) ( ) ( ) ( ) 21+=+=+= XEZEXEZXEYE  and 

( ) ( ) ( ) ( ) ( ) 121Var    +=+=−= YZVarYVarZYVarXVar  and 
hence ( ) ( ) 121−= XVarYVar .   

For an exponentially distributed random variable X with 
( ) x

X exf µµ −= , let ( )XY ceil= .  Then Y is geometrically 
distributed with: 
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Let H2 denote a two-stage hyperexponentially distributed 
random variable X with ( ) xµxµ
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The proof of this is in the appendix.  

Let E2 denote a two-stage Erlang distributed random 
variable X with xxexf µµ −= 2)(  (i.e., both service rates are 
the same).  Then Y has, 
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The proof of this is in the appendix.  When )(YVar  is 
evaluated numerically, we can see that it is usually greater 
than the value of )( XVar , which is equal to 2/2 µ .  The 
reason for this is that the Erlang distribution does not satisfy 
the heuristic assumptions made in Section IIA.  It has a peak, 
which makes the discrete picture more complicated.   

B.  M/G/1 Analysis 

The quantization described in Section IIA corresponds to 
taking the ceiling function of the continuous-valued service 
time.  We introduce a superscript notation ∆ for these 
quantized service times so that the quantized version of an 
M/M/1 queue is denoted /1M/M∆ , which is also equivalent 
to M/Geo/1 with mean service time ( ) 11 −−− µe  defined by eq. 
(1).  Since ( )YE  and ( )YVar  are continuous functions, the 
mean number of customers in the system ( )NE  can be 
determined from the standard Pollaczek-Khintchine (P-K) 
M/G/1 formula [5]: 
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where ( )YEλρ =  is the quantized load.  For /1M/M∆  eq. (9) 
reduces to: 
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with µ the mean service rate of the underlying exponential 
distribution used to calculate the quantized service times.  We 
have also solved /1M/H2

∆  and /1M/E2
∆  queues for ( )NE , but 

those formulas are far more complex than eq. (10) and are not 
shown here.  Moreover, beyond the special cases discussed in 
Section IIA, we do not expect an arbitrary response time 
distribution to possess an analytic quantized form, so a more 
general approach is needed. 

C.  General Quantization Algorithm 

Let ( )tf  be a continuous service time probability density, 
then the following algorithm can be applied either 
algebraically or numerically: 

 



 

1. Determine the cumulative distribution function 

( ) ( )∫=
t

dxxftF
0

                               (11) 

which corresponds to the total area or probability. 

2. Construct the continuous difference function: 

                ( ) ( ) ( )tFtFtF −+= 1ˆ .         (12) 

which corresponds to the sub-area in each time-domain 
interval.  The procedure, so far, is the same as that used 
for proofs in the Appendix.  If ( )tF̂  does not possess a 
closed analytic form, numerical techniques can be 
employed.  

3. Convolve eq. (12) with the Dirac comb III [9] to produce: 

         ( ) ( ) ( )∑
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=

−−=⋅
0

1ˆˆ
k

ktkFIIItF δ ,       (13) 

where ( )⋅δ  is the Dirac delta function [7] chosen to 
conform to the conventions used in the Appendix.  
Selecting integer sampling points with 1=∆k  
corresponds to applying the ceiling function of Section 
IIA (see Fig. 2).  However, eq. (13) is guaranteed to be the 
correct discrete representation for any arbitrary continuous 
service time density ( )tf . 

4. The corresponding mean and variance of the quantized 
distribution are computed from: 
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As an example applicaton of this quantization algorithm, 
consider an /1M/Γ  queue with Gamma probability density 
defined by: 

( ) ( )
β

α

α
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where the gamma function ( ) !1 αα =+Γ  is a generalization 
of the factorial function [7].  The parameters α and β 
respectively determine the shape and the scale of eq. (16), 
which makes it attractive for modeling a variety of empirical 
service time distributions [8].  If 1=α , eq. (16) reduces to 
the exponential density function discussed in Section IIA.  
Unfortunately, this inherent modeling flexibility comes with 
the limitation that no analytic form exists for the quantized 
distribution ( ) IIItF ⋅Γ

ˆ  in eq. (13).  We therefore proceed 
numerically. 

Using the summary network statistics in Table 1, we have 
( ) 82.32 == smα  and 46.0== αβ m .  Substituting these 

values into eqs. (14) and (15) produces ( ) 24.2=Γ YE  and 
( ) 89.0=Γ YVar , respectively and eq. (9) gives the mean 

queue length of /1M/ ∆Γ  (e.g., ( ) 67.5=Γ NE  at an offered 
load of 90.0=ρ  (compare this with Fig. 3)).  

Eq. (13) can also be used to construct the appropriate 
queue-theoretic transforms for the quantized service time 
distribution from the Laplace transform: 
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For the /1M/M∆  queue: 
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and the corresponding P-K transform [5] of the queue length 
distribution: 
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reduces to: 
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All the moments of the queue length distribution can be found 
by taking successive derivatives of ( )zg  [5].  The first 
moment is the mean queue length: 

  ( ) ( ) ( )
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λ
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e
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which is equivalent to eq. (10).  The inverse of ( )zg  (if it 
exists) produces the queue length probability distribution. 

TABLE I 
SUMMARY NETWORK STATISTICS (from [8]) 

 
Statistic Value 

 Sample mean (m) 1.74 
 Sample standard deviation (s) 0.89 
 Estimated shape (α) 3.82 
 Estimated scale (β) 0.46 
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TABLE II 
PACKET TRACE SUMMARY STATISTICS 

 
  Packet interarrival time Packet length 

Mean     66.50 µs            764 bytes 
Standard deviation      68.20 µs            672 bytes 
CoV     1.03              0.88 
Minimum         0.95 µs              64 bytes 
Maximum         2385.97 µs 1518 bytes 
99%   338.08 µs            1518 bytes 
Shape of distribution Decreasing Bimodal 

D.  Application of Models to Packet-to-Cell Segmenting 

We now apply the /1M/M∆  model to predict ( )NE  in 
packets given L, S, and a utilization ρ.  The utilization, ρ, is 
based on the arriving rate of packets (in bits per second) 
divided by the link rate (in bits per second).  Packet arrivals 
are Poisson, and packet lengths are exponentially distributed.  
These assumptions are very restrictive and unrealistic of real 
packet traffic.  However, even with these restrictive 
assumptions we can observe the general behavior of 
segmentation and speed-up.  In the next section, these 
restrictive assumptions are removed in a simulation study.   

For a given L and S, the mean service time in cell time 
units is SLTs = .  For a given link utilization based on 
packets, ρ, the mean interarrival time is ρsa TT = .  Then, 
the mean arrival rate aTλ 1=  and mean service rate 

sTµ 1= .  For the M/M/1, µλρ =  and mean number of 
packets in the system ( ) ( )ρρ −= 1NE .  For the /1M/M∆  
the utilization for quantized service time is, 

( ) ( )µeλYEλρ −−=⋅=′ 1 .  The speed-up, σ, needed to 
achieve carried load equal to offered load (i.e., stability for all 
offered loads up to 1=ρ ) is 

( ) ( )µeµYEµρρσ −−=⋅=′= 1 .  Fig. 3 shows the numerical 
results for ( )NE  for a range of 0.1 , ,51.0 ,50.0 l=ρ  and 

=L 100, 500, and 1000 bytes for 64=S  bytes.  To achieve 
stability, the speed-up required is 354.1=σ  for 100=L  
bytes, 065.1=σ  for 500=L  bytes, and 032.1=σ  for 

1000=L  bytes.  These numerical results show that without 
speed-up, ( )NE  increases rapidly at high offered loads and 
that the smaller L is, the greater is the effect of segmentation 
on ( )NE .  The analytical results in Fig. 3 have been validated 
with a simulation model.  This model was then used in the 
next section for more realistic traffic models. 

III.  SIMULATION OF ISLIP WITH PACKET SEGMENTATION 

We evaluated the effects of discretization on a real 
network traffic using a simulation model with a packet trace 
as input.  We used a previously built and validated iSLIP 
simulation model [6] for this simulation evaluation.  Over 60 
million IP packets were collected from the University of 
South Florida (USF) Internet2 OC-3 (155-Mbps) link.  The 
packet trace collected packet interarrival times, packet length, 
and packet headers.  Table 2 shows the summary of the 
packet trace.  The mean packet length was 764 bytes.  The 

most common packet length was 1518 bytes (31.4% of all 
packets) followed by 64 bytes (28.7%), 1438 bytes (7.7%), 70 
bytes (2.7%), and 594 bytes (1.4%).  All other packet length 
occurs at less than 1%.  The trace file of 60 million packets   
was split into 16 smaller files, each with the same number of 
packets.  Each of these smaller files was then input to a port 
in the modeled 16-port iSLIP switch.  The destination output 
port was assigned using a modulo-16 function of the packet 
IP destination address.  Output port utilization of switch is not 
uniform for real traffic.  In our experiment, we refer 
utilization to be the maximum offered load among all 16 
ports.  Service time (i.e., simulated line speed) is controlled to 
achieve a desired utilization.  For all experiments, control 
variables are offered load and speed-up, and the response 
variable is mean queue length.  An internal cell size of 64 
bytes was used.  Two experiments were run: 

Experiment #1 – For no speedup, 1.05x and 1.1x speedups 
with segmentation and cell padding, mean queue length is 
measured for utilization ranging from 50% to 99%.   

Experiment #2 – The minimum speedup needed for 99% 
utilization is systematically identified.  A queue length of 
1000 or greater is considered a sign of instability.   

Fig. 4 shows the results for the experiment #1.  It can be seen 
that no speedup and the 1.05x speedup cases become unstable 
above 93% and 97% utilization, respectively.  The 1.1x 
speedup case can achieve stability for the entire range of 
utilizations.  For experiment #2, it was found that the 
minimum speed-up needed for 99% utilization was 1.06x.     

IV.  PACKET-TO-CELL SEGMENTATION WITH CELL MERGING 

We propose a new method of segmenting packets into 
cells that applies to input buffered switches and reduces the 
amount of speed-up needed to achieve stability.  When a 
packet is segmented into cells (i.e., in the segmenters shown 
in Fig. 1) the last cell of a packet may be a partially filled cell.  
Instead of queueing this partial cell (with padding bytes) to 
the VOQ, it is held back to wait for the next arriving packet.  
The next arriving packet then starts its segmentation with the 
held back cell from the previous packet.  That is, the header 
bytes of the arriving packet are merged with the trailer bytes 
from the previous packet.  We call this cell merging.  A finite 
state machine (FSM) for cell merging is shown in Fig. 5.  The 
EMPTY state occurs when there is no held back cell and the 
segmenter is idle.  An arriving packet transitions (T0) the 
FSM to the SEGMENTING state where the packet is 

Fig 3. Numerical results for M/M /1 for various values of L
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segmented into cells and the cells queued in the VOQ.  If the 
last cell in a packet is a partial cell it is held back and the 
FSM transitions (T1) to the PARTIAL state (otherwise, the 
transition is to the EMPTY state (T2)).  In the PARTIAL 
state, the segmenter is idle and waiting for an arriving packet 
to transition (T3) back to the SEGMENTING state.  In the 
PARTIAL state a cell merging timer is started when the VOQ 
is empty (e.g., all cells segemented and queued have been 
forwarded).  If this timer expires before an arriving packet, 
then the held back cell is queued with padding bytes and 
transition (T4) is to the EMPTY state.  The purpose of the 
timer is to prevent a packet from being unfairly starved if 
there are no subsequent arrivals for a long period of time.   

 
A.  Simulation Evaluation of Cell Merging 

Experiments #1 and #2 of Section III were repeated for 
the cell merging mechanism with the cell merging timer 
expiration value set to 10 cell times.  Fig. 6 shows the mean 
queue of cell merging compared with the results of Fig. 4 (no 
cell merging).  The packet merging mechanism with no 
speedup becomes unstable above 95%.  The cell merging 
mechanism with a speedup of 1.05x and 1.1x achieved 
stability for all offered load measured.  Cell merging results in 
a lower mean queueing delay for high utilizations.  From 
experiment #2 it was found that the minimum speedup needed 
was 1.04x.  Thus, cell merging required 2% less speedup than 
packet-to-cell segmentation without cell merging.  We 
experimented with cell merging timer values.  A large (100 or 
1000 cell times) timer value results in high queueing delays at 
low utilization and no benefit at high utilizations (where a 
time-out would rarely occur due to frequently arriving 
packets).  We found that a value of 10 cells times works well.  

For a 10-Gbps link, 10 cell times corresponds to a very small 
512 ns.   

V.  SUMMARY AND FUTURE WORK 

This paper makes two contributions.  The first is in 
discovering the application of quantized queues to modeling 
of packets-to-cells segmentation for packet switches.  This is 
the first work to analytically show the speed-up value needed 
for a packet-to-cell segmentation.  We have formally derived 
and proved expressions for mean queue length for /1M/M∆ , 

/1M/H2
∆ , and /1M/E2

∆ .  We have also described a general 
quantization procedure.  Our second contribution is to 
evaluate the speed-up penalty of packets-to-cells 
segmentation and propose an improved method of 
segmentation.  Our proposed cell merging method reduces the 
required speed-up in an input buffered switch.  This is 
significant because increases in link speed continue to 
outpace improvements in memory speed.  We cannot afford 
up to a 2x speed-up just for handling the variable length 
nature of IP packets in the Internet.  Even a small speed-up 
adds cost to high-speed packet switches. 

We believe that quantized queues are an area of much 
future work in both theory and application.  Future work 
includes investigating inverting the P-K transform to 
determine mean queue length distributions.  Future work also 
includes investigating additional practical methods to further 
reduce the required speed-up in VOQ switches.   
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APPENDIX 

In the appendix we derive formulas for the mean and variance 
of the ceiling of exponentially, hyperexponentially, and two-
stage Erlang distributed random variables.  That is, proofs are 
given for eq. (1) and (2) for exponential, eq. (5) and (6) for 
hyperexponential, and eq. (7) and (8) for two-stage Erlang. 

Proof of eq. (1) and (2): For any 1≥k  we compute  
 

    ( ) ( ) =≤<−== kXkPkYP 1  

 ( ) ( ) ( ) ( ))1(111 −−− −−−=−− kk
XX eekFkF λλ .      (A1) 

We can rewrite this ( ) ( )λλ −−− −== eekYP k 1)1( .  Let 
1−= YZ .  Then ( ) ( ) ( )λλ −− −=+=== eekYPkZP k 11 .  

From this it follows that Z has a geometric distribution, that 
is, ( ) pqkZP k== , 1=+ qp , with parameters p, q, where 

λ−= eq  and λ−−= ep 1 .  It is known that the mean of Z is 
equal to pq  and the variance of Z is equal to 2/ pq .  Hence, 
we have 
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ee
eZEYE

1
11

1
1  and      (A2) 

    ( ) ( ) ( )21 λ

λ

−

−

−
==

e
eZVarYVar ,                     (A3) 

which are equations (1) and (2), respectively.  End of proof. 

Proof of eq. (5) and (6): For convenience, we will define 
( ) xexf 1

11
λλ −=  and ( ) xexf 2

22
λλ −= , so that 

( ) ( ) ( )xfxfxf 2211 αα += .  Let us introduce two random 
variables 1X  and 2X , such that 1X  has the pdf 1f  and 2X  
has the pdf 2f .  (We are not assuming that these two random 
variables are independent and are not implying that 

21 XXX += ).  We will also denote ( )11 ceil XY =  and  
( )22 ceil XY = .  For any 1≥k , we compute  
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k

k
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   ( ) ( ) =≤<−+≤<− kXkPkXkP 2211 11 αα  

( ) ( ).2211 kYPkYP =+= αα                       (A4) 

We have already shown that ( ) ieYE i
λ−−= 11  and 

( ) ( )2
1 ii eeYVar i

λλ −− −= , 2,1=i .  Hence  
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Now, the expression for ( )YE , as stated in eq. (5), follows 
immediately from (A4).  We can now find ( )2YE .  It is equal 
to  
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Then eq. (6) for the variance of Y can be immediately derived 
from (A5) and (A6) and the definition of variance.  End of 
proof. 

Proof of eq. (7) and (8): For any 1≥k  we have  

( )∫
−

==
k

k

dxxfkYP
1

)( .                             (A7) 

Let us introduce ( )tm , the moment generating function of Y, 

( ) ( )∑
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=

==
1k

tk kYPetm                               (A8) 

Then substituting (A7) into (A8) we obtain 
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which reduces to: 
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The first moment of Y is the first derivative of ( )tm  evaluated 
at 0=t  and, similarly, the second moment of Y is the second 
derivative of ( )tm  evaluated at 0=t .  From this we get eq. 
(7) and (8).  End of proof. 


