Solutions for Assignment \#5

\#1) The run from mva.c gives the answers:

```
1 customers --- thruput = 0.352941 cust/sec and delay = 2.833333 sec
    >>> n[1] = 0.352941 --- t[1] = 1.000000
    >> n[2] = 0.176471 --- t[2] = 0.500000
    >>> n[3] = 0.117647 --- t[3] = 0.333333
    >>> n[4] = 0.352941 --- t[4] = 1.000000
    <SNIP SNIP>
10 customers --- thruput = 0.894850 cust/sec and delay = 11.175059 sec
    >> n[1] = 4.394081 --- t[1] = 4.910412
    >> n[2] = 0.790627 _-- t[2] = 0.883530
    >>> n[3] = 0.421210 --- t[3] = 0.470705
    >>>n[4] = 4.394081 --- t[4] = 4.910412
```

\#2) For an M/G/1 queue we know that (the P-K formula):

$$
W=\bar{x}+\frac{\lambda \overline{x^{2}}}{2(1-\rho)} .
$$

For deterministic service (M/D/1) the first moment is $1 / \mu$ and the second moment is $1 / \mu^{2}$. For exponential service (M/M/1) the first moment is $1 / \mu$ and the second moment is $2 / \mu^{2}$. For M/D/1 we have:

$$
\mathrm{W}:=\frac{1}{\mu}+\frac{\frac{\lambda}{\mu^{2}}}{2 \cdot\left(1-\frac{\lambda}{\mu}\right)} \text { which simplifies to } \mathrm{W}:=\frac{1}{2 \cdot \mu} \cdot \frac{(\lambda-2 \mu)}{(\lambda-\mu)}
$$

For M/M/1 we have:

$$
\mathrm{W}:=\frac{1}{\mu}+\frac{\frac{2 \lambda}{\mu^{2}}}{2 \cdot\left(1-\frac{\lambda}{\mu}\right)} \text { which simplifies to } \mathrm{W}:=\frac{1}{(\mu-\lambda)} \quad(\text { as expected for } \mathrm{M} / \mathrm{M} / 1)
$$

The ratio of W for $\mathrm{M} / \mathrm{D} / 1$ divided by W for $\mathrm{M} / \mathrm{M} / 1$ is:

$$
\frac{1}{2} \cdot \frac{(-\lambda+2 \cdot \mu)}{\mu} \quad \text { which simplifies to } \frac{1}{2} \cdot(2-\rho)
$$

Thus, as ρ approaches 1.0 the difference in delay is one-half $(\mathrm{M} / \mathrm{D} / 1$ has one-half the delay of $\mathrm{M} / \mathrm{M} / 1$. For $\rho=0$, the delay is the same (as would be expected).
\#3) We state with the file trace.txt unzipped from trace. zip. The file trace.txt looks like this...

```
#StartTime srcIP dstIP srcPort dstPort bytes protocol
1018632325.243815 92.12.241.108 112.130.48.109 2674 1214 40 6
1018632325.243932 79.240.13.140 112.130.49.50 2049 4662 81 6
1018632325.244422 29.168.56.12 112.130.191.129 53005 6346 666 6
1018632325.244458 81.5.247.37 119.223.140.178 6701 49175 1420 6
1018632325.244739 92.12.241.108 112.130.48.109 2674 1214 40 6
1018632325.244982 85.24.242.225 112.130.68.89 3676 6346 367 6
1018632325.245022 145.188.97.170 112.130.113.244 1408 1214 40 6
<snip snip>
```

The sixth column is the packt length. So, awking this out of the file we get a file named pkt_len.txt that looks like

```
4 0
8 1
6 6 6
1420
4 0
367
40
<snip snip>
```

The file pkt_len.txt has the following summary statistics and autocorrelation (computed using summary1.c, summary2.c, and autoc.c):

```
    Total of 500000 values
        Minimum = 28.000000 (position = 264255)
        Maximum = 4470.000000 (position = 160161)
        Sum = 362646682.000000
        Mean = 725.293364
        Variance = 440843.384368
        Std Dev = 663.960379
        CoV = 0.915437
--------------------------------------------------------------------
-----------------------------------------------------
    Total of 500000 values
        Median = 500.000000
            1% value = 40.000000
            2% value = 40.000000
            5% value = 40.000000
        95% value = 1500.000000
        98% value = 1500.000000
        99% value = 1500.000000
---------------------------------------------------------------------
---------------------------------------------------------------
    Autocorrelation for lag 1 = 0.084812
    Autocorrelation for lag 2 = 0.092408
    Autocorrelation for lag 3 = 0.085887
    Autocorrelation for lag 4 = 0.075166
    Autocorrelation for lag 5 = 0.065986
    Autocorrelation for lag 6 = 0.059871
    Autocorrelation for lag 7 = 0.050641
    Autocorrelation for lag }8=0.04525
    Autocorrelation for lag 9 = 0.038823
```

```
Autocorrelation for lag 10 = 0.034337
Autocorrelation for lag 11 = 0.030092
Autocorrelation for lag 12 = 0.024128
Autocorrelation for lag 13 = 0.020001
Autocorrelation for lag 14 = 0.015782
Autocorrelation for lag 15 = 0.012563
Autocorrelation for lag 16 = 0.008535
Autocorrelation for lag 17 = 0.008406
Autocorrelation for lag 18 = 0.005126
Autocorrelation for lag 19 = 0.001950
Autocorrelation for lag 20 = 0.000716
Autocorrelation for lag 21 = 0.000476
Autocorrelation for lag 22 = -0.001030
Autocorrelation for lag 23 = -0.003024
Autocorrelation for lag 24 = -0.003889
Autocorrelation for lag 25 = -0.003893
<snip snip>
```

The autocorrelation drops to approximately zero (less than $1 / 100$) after lag 15.
We modify hist.c to generate a file data dist. dat for genemp. c to use to generate empirically distributed values of packet lengths. The program hist.c is used "as is" with the only modification being the line that outputs results. What was:

```
// Output the histogram
for (i=0; i<NUM_BUCKET; i++)
    printf(" %14.9f <= X < %14.9f = %6ld -- %f %% \n",
        (i * (double) BUCKET_SIZE), ((i + 1) * (double) BUCKET_SIZE),
        bucket[i], 100.0 * ((double) bucket[i] / num_values));
```

Was changed to:
// Output ration and bucket size
printf(" \%14.9f \%14.9f $\backslash n ",((d o u b l e)$ count / N), (i * (double)
BUCKET_SIZE));
The values of BUCKET_SIZE and NUM_BUCKET were set as:

```
#define BUCKET_SIZE 1.0 // Bucket size
#define NUM_BUCKET 4500 // Number of buckets
```

We generate 500,000 synthetic packet lengths and the characterization with summary1.c, summary2.c, and autoc.c is:

```
    Total of 500000 values
        Minimum = 28.000000 (position = 484991)
        Maximum = 4470.000000 (position = 407082)
        Sum = 362544727.000000
        Mean = 725.089454
        Variance = 440740.249295
        Std Dev = 663.882707
        CoV = 0.915587
```

```
----------------------------------------------- Summary2.c ------
    Total of 500000 values
        Median = 501.000000
            1% value = 40.000000
            2% value = 40.000000
            5% value = 40.000000
        95% value = 1500.000000
        98% value = 1500.000000
        99% value = 1500.000000
```



```
---------------------------------------------------------
    Autocorrelation for lag 1 = -0.000880
    Autocorrelation for lag 2 = -0.002227
    Autocorrelation for lag 3 = -0.000101
    Autocorrelation for lag 4 = -0.001942
    Autocorrelation for lag 5 = -0.000272
    Autocorrelation for lag 6 = -0.000454
    Autocorrelation for lag 7 = -0.001022
    Autocorrelation for lag 8 = -0.000879
    Autocorrelation for lag 9 = -0.000839
    Autocorrelation for lag 10 = 0.000112
    Autocorrelation for lag 11 = -0.002152
    Autocorrelation for lag 12 = 0.000736
    Autocorrelation for lag 13 = 0.000095
    Autocorrelation for lag 14 = 0.001198
    Autocorrelation for lag 15 = 0.000397
    Autocorrelation for lag 16 = -0.000586
    Autocorrelation for lag 17 = -0.001475
    Autocorrelation for lag 18=0.000865
    Autocorrelation for lag 19 = 0.002005
    Autocorrelation for lag 20 = 0.000411
    Autocorrelation for lag 21 = 0.000501
    Autocorrelation for lag 22 = -0.001766
    Autocorrelation for lag 23 = -0.001037
    Autocorrelation for lag 24 = 0.001701
    Autocorrelation for lag 25 = 0.001722
    <snip snip>
```

The summary statistics (mean, standard deviation, and percentiles) of the synthetic packet lengths are the same (with 1%) of the actual. The key difference is in autocorrection. The actual packet length trace has an autocorrelation of about 0.1 for the first few lags (i.e., a measurable and non-zero autocorrelation). The empirically distributed packet lengths show no autocorrelation (this is the case since empirically generated values are done so using an independent (i.e., uncorrelated) random number generator).
\#4) Graded individually.
\#5) Graded individually.

