
Solution for Assignment #2 KJC (09/07/04)

#1) I hope you found Mathcad to be a “cool” tool and one that you need to add to your collection. You should also
strongly consider Mathematica (more expensive, steeper learning curve, but also more powerful). I look forward to
seeing what interesting things students may have done in their 20 minutes.

#2) The set-up is () ()
∑

∞

=

−=
0 !k

k

k
zezF λλ . And following from our known expression for xe , we get ())1(zezF −−= λ .

#3) Recall that a sum of random variables is a convolution of pdf’s which is a multiplication of the z transforms of
the pdf’s. Recall also that multiplying exponentials is done by adding their exponents. So, a product of multiple
F(z)’s for a Poisson process results is a Poisson process. For example, two Poisson distributions with the same rate
parameter, λ, sum to ())1(2 zezF −−= λ , which is the same transform and hence the same distribution (recall that each
distribution has a unique transform). This sum of rv’s results in the same distribution is a unique property of the
Poisson process.

#4) We expect that the system delay will increase with utilization increasing. However, with exponential smoothing
the next predicted value can never be greater than the current value (i.e., with α = 1). Thus, exponential smoothing
is not a suitable technique for predicting future values of a steadily increasing series.

#5) First we need to parse-out the packet length values from trace.txt. I used awk to do this (you can also write a C
program to do this). My awk program (split.awk) was a one liner:

{ print ($6) }

And, the invocation was

awk -f split.awk < trace.txt > pkt.txt

I removed the first line of the file pkt.txt (to eliminate the text “bytes”). Then, used summary1.c and
summary2.c to get:

-- summary1.c -----
Total of 500000 values

Minimum = 28.000000 (position = 264255)
Maximum = 4470.000000 (position = 160161)
Sum = 362646682.000000
Mean = 725.293364
Variance = 440843.384368
Std Dev = 663.960379
CoV = 0.915437

-- summary2.c -----

Total of 500000 values
Median = 500.000000
1% value = 40.000000
2% value = 40.000000
5% value = 40.000000

95% value = 1500.000000
98% value = 1500.000000
99% value = 1500.000000

To get a histogram I used hist.c and put the results (for bin size of 10 and 500 bins) into Excel. The histogram is
shown in Figure 1. Packet lengths are distributed bimodally with peaks at 40, 1420, and 1500 bytes. This very
likely corresponds to large packets for bulk data transfers and small packets for ACK and other control messages.
Note that a maximum length Ethernet packet is 1500 bytes.

Figure 1 - Histogram of packet lengths from trace.txt

#6) We need to time a function call. Clearly, one function call is too short in duration for our system clock (of
granularity 10 milliseconds), so we need to embed the call within a loop. The test program looks something like:

// Measurement program for assignment #2, problem #3
// - Derivative of timeit.c from tools page
#include <stdio.h> // Needed for printf()
#include <sys\timeb.h> // Needed for ftime() and timeb structure

double add(double x, double y);

void main(void)
{
struct timeb start, stop; // Start and stop times structures
double elapsed; // Elapsed time in seconds
double sum, x, y; // Doubles for addends and sum
int i; // Loop counter

// Initialize x and y
x = 123456.0;
y = 654321.0;

// Start timing
ftime(&start);

for (i=0; i<1000000000; i++) {
// sum = x + y; // line #1
// sum = add(x,y); // line #2

}

// Stop timing, compute elapsed time, and output it
ftime(&stop);
elapsed = ((double) stop.time + ((double) stop.millitm * 0.001)) -

((double) start.time + ((double) start.millitm * 0.001));
printf("Elapsed time = %f sec \n", elapsed);

}

double add(double x, double y)
{
return(x + y);

}

0
5

10
15
20
25
30
35

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Packet length (bytes)

Pe
rc

en
ta

ge
 o

f o
cc

ur
en

ce
29% at 40 bytes

27% at 1500 bytes

12% at 1420 bytes

A loop value of 1 billion iterations results in execution times of several seconds on my old 900-Mhz P4
Windows2000 PC. An execution time of several seconds is sufficient to minimize start and stop overhead and clock
granularity. To baseline the code I ran it with both line #1 and line #2 commented out and got (for 5 runs):

Elapsed time = 3.264000 sec
Elapsed time = 3.265000 sec
Elapsed time = 3.265000 sec
Elapsed time = 3.264000 sec
Elapsed time = 3.265000 sec

For line #1 executed (inline) but line #2 commented out:

Elapsed time = 15.202000 sec
Elapsed time = 15.192000 sec
Elapsed time = 15.202000 sec
Elapsed time = 15.192000 sec
Elapsed time = 15.202000 sec

And, for line #2 executed (function) but line #1 commented out:

Elapsed time = 24.966000 sec
Elapsed time = 24.966000 sec
Elapsed time = 24.965000 sec
Elapsed time = 24.966000 sec
Elapsed time = 24.966000 sec

We can see that run times have little variance. Subtracting the loop overhead from the inline time run time and
dividing by 1 billion we get an execution time of about 11.6 nanoseconds. Subtracting the loop overhead from the
function time and dividing by 1 billion we get 21.7 nanoseconds. Thus, it requires an additional about 10
nanoseconds for a function call, or about 47% additional time for the simple two-value addition. Here is the
assembly listing from the bcc32 compiler showing just the loop overhead:

; for (i=0; i<1000000000; i++)
;
xor eax,eax

@3:
inc eax
cmp eax,1000000000
jl short @3
;
; {
; // sum = x + y; // line #1
; // sum = add(x,y); // line #2
; }

The inline version (the main loop only) is:

; for (i=0; i<1000000000; i++)
;
xor eax,eax
;
; {
; sum = x + y; // line #1
;

?live1@80: ; EAX = i
@2:

fld qword ptr [ebp-48]
fadd qword ptr [ebp-56]
fstp st(0)
inc eax
cmp eax,1000000000
jl short @2
;
; // sum = add(x,y); // line #2
; }

And here is the function version:

; for (i=0; i<1000000000; i++)
;
xor ebx,ebx
;
; {
; // sum = x + y; // line #1
; sum = add(x,y); // line #2
;

?live1@80: ; EBX = i
@2:

push dword ptr [ebp-52]
push dword ptr [ebp-56]
push dword ptr [ebp-44]
push dword ptr [ebp-48]
call _add
add esp,16
fstp st(0)
inc ebx
cmp ebx,1000000000
jl short @2
;
; }

This shows that it takes several assembler instructions for each line of C code. This also shows that the function is
not being inlined.

#7) Extra Credit: I don’t have an answer. I look forward to seeing what the students find.
