
Solutions to Mini-Project #2 for Computer Networks (Fall 2014) 
 

1) For the CTMC below do the following.  
 Write and then solve as three equations in three unknowns the Q matrix.  
 Use uniformization to convert the Q matrix to a P matrix. Give the P matrix and then 

solve it as three equations in three unknowns 
 Solve the P matrix using the power (iterative) method. Hint: You can use iter.c found 

on the Christensen Tools page and show a screenshot of the execution. 
 

 
 

From this we can directly write the transition rate matrix (Q matrix) as: 
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where the rates are in transitions per day. We know that Q0  where 1 , 2 , and 3  (where for 

the states 1 = a, 2 = b, and 3 = c) are the steady state probabilities that we seek. From the Q 
matrix we can write the following equations: 

 
 
 
 
 

These equations are dependent, so we break the dependence with the identify (sum of steady 
state probabilities must be 1). So,  

 
 
 
 
 

This we can solve and we get 625.01  , 125.02  , and 250.03  . Using uniformization, we 

convert the Q matrix into a P matrix: 
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From the P matrix we write the following equations following from P : 
 

 
 
 
 
 

These equations are dependent, so we break the dependence with the identify (sum of steady 
state probabilities must be 1). So,  

 
 
 
 

 
This we can solve and we get 625.01  , 125.02  ,and 250.03   (as expected!). Finally, we 

solve the P matrix iteratively (note that the index starts at 0 and not 1): 
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2) You are given a system or component (for example, a transceiver) with three states, BUSY, 
IDLE, and SLEEP (corresponding to the system or component being powered-on and busy, 
powered-on and idle, and sleeping, respectively). Let the power draw of each state be as 
follows: 

 BUSY = 1 W 
 IDLE = 0.8 W 
 SLEEP = 0.1 W 

Periodically, once per minute the system transitions between states (including to the same 
state) with a known probability as given below. What is the average power draw of this 
system or component? Write the state equations and solve them both directly and iteratively 
(e.g., using iter.c found on the Christensen tools page). 

 BUSY to BUSY with probability 0.50, BUSY to IDLE with probability 0.25, and 
BUSY to SLEEP with probability 0.25 

 IDLE to IDLE with probability 0.25, IDLE to BUSY with probability 0.50, and IDLE 
to SLEEP with probability 0.25. 

 SLEEP to SLEEP with probability 0.25 and SLEEP to BUSY with probability 0.75. 
 
First we draw the Markov chain (letting 1 = BUSY, 2 = IDLE, and 3 = SLEEP) with transition 
probabilities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
From this we can directly write the transition rate matrix (P matrix) as: 
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We know that P  where 1 , 2 , and 3  (where for the states 1 = BUSY, 2 = IDLE, and 3 = 

SLEEP). From the P matrix we can write the following equations: 
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These equations are dependent, so we break the dependence with the identify (sum of steady 
state probabilities must be 1). So,  
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This we can solve and we get 1691  , 1632  , and 1643  ,  So, the average power draw 

of the system or component is       7380101648001631169 ...   W. 

 
And, here is the P matrix solved iteratively using iter.c (note that index starts at 0 and not 1): 
 

 
 
 
3)  Consider an M/M/2/4 queue (a queue with two service centers and a buffer with capacity of 

two customers) with arrival rate 1.0 customers/second and service rate 1.0 customers/second 
for each service center.  Answer the following questions (show your work!): 

 
a) Sketch the continuous time Markov chain for this queue. 
 

 



b) Solve the Markov chain for steady state probabilities and mean number in the system.  
 
First we write the Q matrix directly from the ctmc. 
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From this we can write five equations in five unknowns and solve it. 
Easier, however, is an iterative solution as shown here: 
 

 
 

 
 



 
 
 
4) You have invented a new method of routing packets end-to-end to minimize packet delay. 

You think that your method is better (that is, mean packet delay is less) than existing 
methods. To evaluate your method you have conducted experiments on a network test bed 
sending packets from multiple sources to a given destination. You have measurement results 
for the existing routing method and your new routing method (which you inserted into the 
network test bed routers). Your measurement results are: 

 
 Old method New method 
Experiment Delay (ms) Delay (ms) 

1 2.11 1.95 
2 2.10 2.94 
3 2.30 1.98 
4 3.01 2.10 
5 2.05 2.22 
6 1.95 1.99 
7 2.05 2.00 

 
You believe that your experiments are representative of the real Internet. Is your method 
better? Should it be deployed in the Internet? Below is a T-score table that may be helpful to 
your argument. 



        T-scores.  Selected values of 1;2 Nt  
 05.02   025.02   

N – 1 t t 
4 2.13 2.78 
5 2.02 2.57 
6 1.94 2.45 
7 1.90 2.37 
8 1.86 2.31 
9 1.83 2.26 

10 1.81 2.23 
11 1.80 2.20 
12 1.78 2.18 

 
The mean packet delay (for the seven experiments) for the old method is 2.23 ms and for the new 
method it is 2.16 ms. This is about a 3% lower delay. First we should ask if an approximately 3% 
improvement is significant in any way. In most real systems such a small difference in response time 
would be insignificant compared to many other possible design parameters (such as final cost of the 
product in terms of development time, material, operation, and so on) to influence the decision 
whether to choose design A or B. But, since we were asked the question we will answer it.  The 
approach to this problem is to use hypothesis testing (using the Student’s t-test since we have less 
than 30 samples) for paired experiments.  Subtracting the measured delays we get D = 0.16, -0.84, 
0.32, 0.91, -0.17, -0.04, and 0.05 ms (the packet delay of the new system subtracted from the packet 
delay of the existing system). We compute the mean difference and sample standard deviation: 
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freedom the t score is 1.94, for 95% confidence it is 2.45. Thus, the half-width for 90% CI is 

  387.07528.094.1   and for 95% CI it is   489.07528.045.2  .  The mean difference (0.056 ms) 

plus/minus the 90% and 95% CIs both cross zero. Thus, with 90% and 95% confidence the new 
system is not better (less delay) than the old system. But, even if this were not the case we still likely 
would “not care” since a 3% improvement is generally not of much interest. 

 
 

 


